The only requirement is that someone performed the primary event on A and the secondary event is correlated to that primary event.
the UR can recommend to a user who has only performed the secondary event on B as long as that is in the model. Makes no difference what subset of events the user has performed, recommendations will work event if the user has no primary events.
So think of the model as being separate from the user history of events. Recs are made from user history—whatever it is, but the model must have some correlated data for each event type you want to use from a user’s history and sometimes on infrequently seen items there is no model data for some event types.
Popularity has very little to do with recommendations except for the fact that you are more likely to have good correlated events. In fact we do things to normalize/down weight highly popular things because otherwise recommendations are worse. You can tell this by doing cross-validation tests for popular vs collaborative filtering using the CCO algorithm behind the UR.
If you want popular items you can make a query with no user-id and you will get the most popular. Also if there are not enough recommendations for a user’s history data we fill in with popular.
Your questions don’t quite match how the algorithm works so hopefully this straightens out some things.
Hi guys,
So I've been playing around with the
UR algorithm and I would like to know 2 things if it is
possible:
1- Does UR recommend items that are
linked to primary event only? Like if item A is pruchased (primary
event) 1 time and item B is liked (secondary event) 50 times, does
UR only recommend item A as the popular one even though item B have
x50 secondary event? Is there a way to play around this?
2- When I first read about UR I
thought that it recommend items based on the frequency of secondary
events to primary events. ie: if 50 likes (secondary event) of item
A lead to the purchase of item B and 1 view (secondary event) of
item A lead to the purchase of item C, when someone view and like
item A he will get recommended item B and C with equal score
disregarding the 50 likes vs 1 view. Is that the correct behavior
or am I missing something? Does all secondary event have same
weight of influence for the recommender?
I hope that you can help me out
understanding UR template.
Regards,
Sami Serbey