Once again... the phoenix tries to rise from its ashes...
I have included the LaTeX source below...
Compile it to PDF and then read the paper...
I have shortened many things...
But in case you think I am missing something please do let me know...
Thanks
Roupam
---(Source starts below)---
\documentclass[12pt]{amsart}
\usepackage{geometry} % See geometry.pdf to learn the
layout options. There are lots.
\geometry{letterpaper} % ... or a4paper or a5paper
or ...
%\geometry{landscape} % Activate for for rotated page
geometry
%\usepackage[parfill]{parskip} % Activate to begin paragraphs with
an empty line rather than an indent
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{epstopdf}
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/
`basename #1 .tif`.png}
%\date{} % Activate to
display a given date or no date
\begin{document}
\begin{center}
\bigskip
{\Huge A proof of the Collatz problem}
\bigskip
{\Large Roupam Ghosh}
$\
emph{roupam...@gmail.com}$
\bigskip
\textit{Abstract}
\end{center}
We prove the Collatz conjecture, by trying to complete an incomplete
sequence, and eliminating out the contradictions. We also check and
eliminate out the possibility of an infinite loop. In the end we show
that every integer has a finite stopping time, which in other words
solves the Collatz conjecture.
\bigskip
\section{The Collatz Problem}
Consider the function
\begin{equation*}
f(x) =
\begin{cases}
\frac{x}{2} & \text{if $x$ is even}\\
3x+1 & \text{if $x$ is odd}
\end{cases}
\end{equation*}
\bigskip
The Collatz conjecture states that there exists an integer $d (\ge 0)$
corresponding to $x$ such that
$f^d(x) = 1$ for all natural numbers $x$
\\
where $f^d(x) = f(f(f(... $d times ...$(f(f(f(x))))))) $
\\
\section{Considering only odd integers}
Now if we consider only odd integers of the Collatz sequence, and
modify the function as follows
Consider the function for odd integers
\begin{equation*}
T(x) = \frac{(3x+1)}{2^k}
\end{equation*}
where k is the highest power of 2 that divides $3x+1$
\\
\\
\emph{If we can prove that for all odd integers the stopping time
corresponding to T(x) is finite, then the Collatz problem is proved.}
\newpage
\section{Considering an incomplete sequence}
\paragraph{Consider a given incomplete sequence}
$a_1, a_2, ... , a_m$ , where $a_k = T^k(a_1)$, and $a_1$ is the
minimum among $a_1, ... , a_m$.
\newline
\newline
Then we shall have
$2^{S_m} = (3 + \frac{1}{a_1})(3 + \frac{1}{a_1}) ... (3 + \frac{1}
{a_1}) \frac{a_1}{a_{m+1}}$
\newline
But since $a_1$ is mimimum, hence, we shall,\\
\begin{equation}
2^{S_m} < (3 + \frac{1}{a_1})^m\frac{a_1}{a_{m+1}}
\end{equation}
\bigskip
Now lets suppose
\begin{equation}
a_{m+1} < a_1
\end{equation}
\begin{equation}
\frac{3^m}{2^{S_m}}a_1 + \frac{c_m}{2^{S_m}} < a_1
\end{equation}
\newline
\newline
Now, for $m > 3, c_m > 3^m$, hence we have
\begin{equation}
\frac{3^m}{2^{S_m}}a_1 + \frac{3^m}{2^{S_m}} < a_1
\end{equation}
\begin{equation}
\frac{3^m}{2^{S_m}} (a_1 + 1) < a_1
\end{equation}
\begin{equation}
3^m(\frac{1+a_1}{a_1}) < 2^{S_m}
\end{equation}
From (1) and (6) we have
\begin{equation}
3^m(\frac{1+a_1}{a_1}) < (3 + \frac{1}{a_1})^m\frac{a_1}{a_{m+1}}
\end{equation}
From (7) we get after rearranging the terms
\begin{equation}
3^m(a^2_1 - a_1 a_{m+1} - a_{m+1}) + ^mC_1 3^{m-1}a_1 + ... + \frac
{^mC_m}{a^{m-2}_1} > 0
\end{equation}
Here by (2) we have the equation
\begin{equation}
L.H.S > 3^m(- a_{m+1}) + ^mC_1 3^{m-1}a_1 + ... + \frac{^mC_m}{a^
{m-2}_1}
\end{equation}
Which reduces to the equation (10) if we assume (11) to be true
\begin{equation}
(ma_1 - 3a_{m+1}) + \frac{2^m - m - 1}{3^{m-1} a^{m-2}_1} > 0
\end{equation}
\begin{equation}
3^m(- a_{m+1}) + ^mC_1 3^{m-1}a_1 + ... + \frac{^mC_m}{a^{m-2}_1} \\
> (ma_1 - 3a_{m+1}) + \frac{2^m - m - 1}{3^{m-1} a^{m-2}_1}\\
>0
\end{equation}
Now for $m > 3$
\begin{equation}
\frac{2^m - m - 1}{3^{m-1} a^{m-2}_1} < 1
\end{equation}
Hence,
\begin{equation}
(ma_1 - 3a_{m+1}) > 0
\end{equation}
which is true since $m > 3$ and $a_1 > a_{m+1}$
\\
\\
\subsection{Statement 1}
Hence, we get from (1) and (2) and assumption (11), the equation (12)
which is true. If (1), (2) or (11) was false, (12) would also have
been false. Hence, (2) as well as (12) is true. So we can state that,
for any arbitrary number $a_1$ there exists $m > 3$ such that $a_{m+1}
< a_1$. Which , obviously, gives a hint that all integers have a
finite stopping time.
\newline
\newline
\paragraph{Now consider, if for all $m \ge 1$}
\begin{equation}
a_{m+1} > a_1
\end{equation}
\begin{equation}
\frac{3^m}{2^{S_m}}a_1 + \frac{c_m}{2^{S_m}} > a_1
\end{equation}
But, for $m \ge 1$
\begin{equation}
\frac{3^m}{2^{S_m}}a_1 + \frac{m4^{m-1}}{2^{S_m}} \ge \frac{3^m}{2^
{S_m}}a_1 + \frac{c_m}{2^{S_m}} ,\\
\end{equation}
\newline
Therefore,
\begin{equation}
\frac{3^m}{2^{S_m}}a_1 + \frac{m4^{m-1}}{2^{S_m}} > a_1
\end{equation}
Implies,
\begin{equation}
a_1 < \frac{m4^{m-1}}{2^{S_m} - 3^m}
\end{equation}
Which in turn, implies,
\begin{equation}
a_1 < m4^{m-1}\\
\end{equation}
Since $2^{S_m} - 3^m \ge 1$ for all $m \ge 1$
\\
But here, $a_1$ is arbitraily chosen, and doesn't depend on the value
of m
Hence, (19) does not hold true for all m. So, our assumption $a_{m+1}
> a_m$ for all $m \ge 1$, must be wrong
\\
\\
\\
This gives us an indication that any infinite trajectory cannot have a
minimum $a_1$.
Which is clearly impossible. Hence, infinite trajectories do not
exist. Considering the fact that infinite trajectories do not exist,
we may say from \textbf{Statement 1} that $m > 3$ has a finite value.
All of the above sums up to the fact, that every number has a finite
stopping time.
\subsection{Q.E.D}
Does this solve the Collatz problem??? You decide... :)!!!
\end{document}