--
You received this message because you are subscribed to the Google Groups "Periodic table mailing list" group.
To unsubscribe from this group and stop receiving emails from it, send an email to PT-L+uns...@googlegroups.com.
To view this discussion visit https://groups.google.com/d/msgid/PT-L/c3a1a223-2fd6-4d4b-b3c4-61ec5b3f06a6n%40googlegroups.com.
Here's a simplified versionAnd an older version from 2008.Julio Antonio Gutiérrez Samanez
El dom., 27 jul. 2025 05:17, Julio gutierrez samanez <kut...@gmail.com> escribió:Hello, distinguished colleagues. I've just seen the "square spiral." It's certainly a new endeavor, but it's very much under the straitjacket of Chemistry and its insurmountable groups and blocks. In reality, I see it as forcing the standard table into a square.
Whether square or circular, a spiral must be a continuous line. A radius vector that grows in size as it rotates through a certain angle, like the Archimedean spiral, with one restriction: this angle, for every two circumvolutions or periods with the same number of elements, is what we call a binode or dyad (according to Baca Mendoza and Charles Janet).
The division pattern is the one proposed by Pauli: 2n^2 = 2, 8, 18, 32, 50, 72... where n is valid for two periods that change as a new azimuthal quantum increases. That is, for n = 1, the background will be formed by two nested circles (for example, of radius 1 and radius 2), for two spirals. Since 2n^2 = 2, then this background is divided into two radii or a diameter, making two crescents. If the two spirals are inscribed, only 4 elements fit at the intersections with the diameter, according to the relation 4n^2 = 4. For n = 1.
For n = 2, the background is expanded to include two "annulus" of larger radii for the second pair of periods. The division pattern will be 2 (2 ^2) = 8, and the number of elements in the two spirals will be 4(2^2) = 16, because in this binode there will be 4 s elements, as in the first, plus 12 d elements. In the following way: (6, 2; 6, 2) this is why it is said that there is a "doubling of periods," but this is only in the number of elements, since the even period develops on another level, in another, broader spiral that envelops the first. And so on.
As you can see in the following link, my allusions to Hegel and Engels raised many hackles.
Julio
https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=946
Hola ilustres colegas. Recién veo la “espiral cuadrada”, ciertamente, es una tentativa nueva, pero muy sometida a la camisa de fuerza de la Química y sus insalvables grupos y bloques. En realidad veo que es como meter por la fuerza a la tabla estandar dentro de un cuadrado.
Sea cuadrada o circular, una espiral debe ser una línea continua. Un radio vector que crece de tamaño a medida que rota en cierto ángulo, como la espiral de Arquímides, con una restricción: este ángulo, para cada dos circunvalaciones o periodos con el mismo número de elementos que llamamos bínodo o díada (según Baca Mendoza y Charles Janet).
El patrón de división es el que propuso Pauli: 2n^2= 2, 8,18, 32, 50, 72… donde n es válido para dos periodos que cambian al incrementarse un nuevo cuántico azimutal . Es decir, para n =1, el fondo será formado por dos círculos anidados (por ejemplo, de radio 1 y radio 2), para dos espirales. Como 2n^2=2, entonces este fondo se divide en dos radios o un diámetro, haciendo dos medias lunas. Si se inscribe las dos espirales, en las intersecciones con el diámetro solo caben 4 elementos, de acuerdo con la relación 4n^2 = 4. Para n =1.
Para n = 2, se amplía el fondo para dos “coronas circulares” de radios mayores para el segundo par de periodos. El patrón de división será 2 (2 ^2)= 8 y el número de elementos en las dos espirales será 4(2^2)= 16, porque en este bínodo habrá 4 elementos s, como en el primero, a los que se incrementa 12 elementos d. De la forma que sigue: (6, 2; 6, 2) por esto se dice que hay “duplicación de periodos ” pero, esto es sólo en el número de elementos, pues el periodo par se desarrolla en otro nivel, en otra espiral más amplia que envuelve a la primera. Así, sucesivamente.
Cómo se puede ver en el link siguiente que. por mis alusiones a Hegel y Engels, sacó muchas ronchas.
Julio Antonio Gutiérrez Samanez
To view this discussion visit https://groups.google.com/d/msgid/PT-L/CAO6d3h%2BHap%3DzeCsVj_woA%3D5F7x3PZd9%2Bmf6Adxr8TmbO3P7o0Q%40mail.gmail.com.
Apologies for not addressing your points earlier, at least within this group.
1. There is a lot to your periodic spiral i.e. more than meets the eye and it has consequently taken me a while to gather my thoughts, in between other commitments In my earlier comments I referred to your periodic spiral as "out of the box" thinking and that remains my impression.2. Jess and Julio: thanks very much for sharing your thoughts, which I have yet to studiously read.3. Although I am still researching the nature of the group 11 and 12 metals, I suspect they can be referred to as "incipient p-block metals", given all of them show, or are known to show, main-group chemistry. Of course, Cu and Au show transition metal chemistry too, while in its most stable +1 oxidation state, Ag shows main-group chemistry. Along the base of the periodic spiral, the labels would then be:incipient "p" block PERIOD DIVIDE"p" blockmetalsI think there may be some similar things happening in the other three corners of the periodic spiral.
Hello, distinguished colleagues. I've just seen the "square spiral." It's certainly a new endeavor, but it's very much under the straitjacket of Chemistry and its insurmountable groups and blocks. In reality, I see it as forcing the standard table into a square.
Whether square or circular, a spiral must be a continuous line. A radius vector that grows in size as it rotates through a certain angle, like the Archimedean spiral, with one restriction: this angle, for every two circumvolutions or periods with the same number of elements, is what we call a binode or dyad (according to Baca Mendoza and Charles Janet).
The division pattern is the one proposed by Pauli: 2n^2 = 2, 8, 18, 32, 50, 72... where n is valid for two periods that change as a new azimuthal quantum increases. That is, for n = 1, the background will be formed by two nested circles (for example, of radius 1 and radius 2), for two spirals. Since 2n^2 = 2, then this background is divided into two radii or a diameter, making two crescents. If the two spirals are inscribed, only 4 elements fit at the intersections with the diameter, according to the relation 4n^2 = 4. For n = 1.
For n = 2, the background is expanded to include two "annulus" of larger radii for the second pair of periods. The division pattern will be 2 (2 ^2) = 8, and the number of elements in the two spirals will be 4(2^2) = 16, because in this binode there will be 4 s elements, as in the first, plus 12 d elements. In the following way: (6, 2; 6, 2) this is why it is said that there is a "doubling of periods," but this is only in the number of elements, since the even period develops on another level, in another, broader spiral that envelops the first. And so on.
As you can see in the following link, my allusions to Hegel and Engels raised many hackles.
Julio
https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=946
Hola ilustres colegas. Recién veo la “espiral cuadrada”, ciertamente, es una tentativa nueva, pero muy sometida a la camisa de fuerza de la Química y sus insalvables grupos y bloques. En realidad veo que es como meter por la fuerza a la tabla estandar dentro de un cuadrado.
Sea cuadrada o circular, una espiral debe ser una línea continua. Un radio vector que crece de tamaño a medida que rota en cierto ángulo, como la espiral de Arquímides, con una restricción: este ángulo, para cada dos circunvalaciones o periodos con el mismo número de elementos que llamamos bínodo o díada (según Baca Mendoza y Charles Janet).
El patrón de división es el que propuso Pauli: 2n^2= 2, 8,18, 32, 50, 72… donde n es válido para dos periodos que cambian al incrementarse un nuevo cuántico azimutal . Es decir, para n =1, el fondo será formado por dos círculos anidados (por ejemplo, de radio 1 y radio 2), para dos espirales. Como 2n^2=2, entonces este fondo se divide en dos radios o un diámetro, haciendo dos medias lunas. Si se inscribe las dos espirales, en las intersecciones con el diámetro solo caben 4 elementos, de acuerdo con la relación 4n^2 = 4. Para n =1.
Para n = 2, se amplía el fondo para dos “coronas circulares” de radios mayores para el segundo par de periodos. El patrón de división será 2 (2 ^2)= 8 y el número de elementos en las dos espirales será 4(2^2)= 16, porque en este bínodo habrá 4 elementos s, como en el primero, a los que se incrementa 12 elementos d. De la forma que sigue: (6, 2; 6, 2) por esto se dice que hay “duplicación de periodos ” pero, esto es sólo en el número de elementos, pues el periodo par se desarrolla en otro nivel, en otra espiral más amplia que envuelve a la primera. Así, sucesivamente.
Cómo se puede ver en el link siguiente que. por mis alusiones a Hegel y Engels, sacó muchas ronchas.
To view this discussion visit https://groups.google.com/d/msgid/PT-L/CAO6d3h%2BHap%3DzeCsVj_woA%3D5F7x3PZd9%2Bmf6Adxr8TmbO3P7o0Q%40mail.gmail.com.
To view this discussion visit https://groups.google.com/d/msgid/PT-L/CAJ-%2B8fBm1xd9Kt7Qu5oa4DhEUkVZnmzbC9dag4LxbbXwVbZVEw%40mail.gmail.com.