# Two new factors of (M+2)25964951 by P-1 by mprime255-OSX

5 views

### bearnol

Apr 6, 2010, 7:09:14 PM4/6/10
to Mersenneplustwo
[Tue Apr 6 23:07:19 2010]
P-1 found a factor in stage #2, B1=250000, B2=25000000.
2^25964951+1 has a factor:
275101007985619313911021416426482301936417228578241363

Desmond:Desktop james\$ gp
GP/PARI CALCULATOR Version 2.3.5 (released)
i386 running darwin (ix86 kernel) 32-bit version
compiled: Mar 1 2010, gcc-4.0.1 (Apple Inc. build 5490)
(readline v6.1 enabled, extended help available)

Copyright (C) 2000-2006 The PARI Group

PARI/GP is free software, covered by the GNU General Public License,
and
comes WITHOUT ANY WARRANTY WHATSOEVER.

Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.

parisize = 4000000, primelimit = 500000
? factor(275101007985619313911021416426482301936417228578241363)
%1 =
[3 1]

[155789707 1]

[812215323627522177851 1]

[724704549317978699462953 1]

? (2^25964951+1)%812215323627522177851
%2 = 0
? (2^25964951+1)%724704549317978699462953
%3 = 0
? factor(812215323627522177850)
%4 =
[2 1]

[5 2]

[19 1]

[1571 1]

[20959643 1]

[25964951 1]

? factor(724704549317978699462952)
%6 =
[2 3]

[3 1]

[2311 1]

[25763 1]

[19532861 1]

[25964951 1]

Last login: Thu Apr 1 16:48:42 on ttys004
Desmond:~ james\$ cd math/gmp-ecpp
Desmond:gmp-ecpp james\$ ./atkin49.gmp*
total = 3183
max = 111763

PI =
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458701
******************
E =
2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901157383418793070215408914993488416750924476146066808226480016847741185374234544243710753907774499206955170227
******************
NATLOGONEPOINTNINE =
0.64185388617239472924480336140742337708875986273577482323572661701981349350622067937977027835051711557447795163484234193531054347593783899429423869404453535514142240725738237814424208303296382145925585774588652778113072312704658578565729252450789704376486755030303476770273209650026296904001464121404548576383
******************
number to be tested or 0 to quit:
812215323627522177851
D = -11, dP = 1, P = 1 32768
D = -67, dP = 1, P = 1 147197952000
D = -40, dP = 2, P = 1 -425692800 9103145472000
j = 90021725350773785264
N[0] = 812215323627522177851
a = 304214052854305116811
b = 331393638474010047504
m = 812215323677429621290
q = 79817609813
P = (823378840, 62123671314202303964)
P1 = (0, 1)
P2 = (662584314903099534081, 118734624454508721271)
D = -7, dP = 1, P = 1 3375
D = -19, dP = 1, P = 1 884736
D = -379, dP = 3, P = 1 364395404104624239018246144
-121567791009880876719538528321536
15443600047689011948024601807415148544
j = 29585366875
N[1] = 79817609813
a = 9673308752
b = 46762867374
m = 79818147715
q = 3472619
P = (1962408013, 79241018599)
P1 = (0, 1)
P2 = (49271201636, 52712238125)
proven prime
number to be tested or 0 to quit:
724704549317978699462953
N[0] = 724704549317978699462953
a = 724704549317978430242859
b = 0
m = 724704549316689559274730
q = 132004471642384254877
P = (330111137, 318733109572171319789140)
P1 = (0, 1)
P2 = (619710125911572717061466, 359897736611303300692413)
N[1] = 132004471642384254877
a = 0
b = 129422195453059149516
m = 132004471665353707719
q = 291309927076459
P = (832633821, 118672181743302768539)
P1 = (0, 1)
P2 = (68314798585711894083, 33301792376414759859)
N[2] = 291309927076459
a = 0
b = 269968452837120
m = 291309961149391
q = 4466094733
P = (532236123, 242025458933045)
P1 = (0, 1)
P2 = (122963006718811, 94158040946941)
N[3] = 4466094733
a = 0
b = 2894203099
m = 4466223337
q = 103865659
P = (944303455, 3895710490)
P1 = (0, 1)
P2 = (2002617471, 2077332943)
proven prime
number to be tested or 0 to quit: