openCR and sigma

77 views
Skip to first unread message

Cheryl Lohr

unread,
Jun 22, 2020, 8:30:02 PM6/22/20
to secr

Hi folks,

Thank you in advance for any advice you can give me.

 

I’m trying to estimate the density of golden bandicoots on an island using openCR. The trapping data unfortunately has unequal intervals between primary sessions and an unequal number of secondary sessions. I seem to be getting a lot of movement in sigma which is drastically altering the estimates of density.

 

                                                             model npar rank    logLik      AIC     AICc    dAIC AICwt

sigma_withinbetween_JSSAsecrD       lambda0~1 phi~1 D~1 sigma~b + t   11   11 -6203.378 12428.76 12429.56   0.000     1

bwithin_primary_sigma_JSSAsecrD         lambda0~1 phi~1 D~1 sigma~b    5    5 -6349.819 12709.64 12709.82 280.882     0

Dsigmawithin_JSSAsecrD                  lambda0~1 phi~1 D~t sigma~b   11   11 -6345.813 12713.63 12714.43 284.871     0

Dsigma_JSSAsecrD                        lambda0~1 phi~1 D~t sigma~t   16   16 -6370.344 12772.69 12774.37 343.932     0

PhiD_JSSAsecrD                          lambda0~1 phi~t D~t sigma~1   15   15 -6386.530 12803.06 12804.54 374.304     0

sigma_JSSAsecrD                         lambda0~1 phi~1 D~1 sigma~t   10   10 -6396.644 12813.29 12813.96 384.532     0

Phi_JSSAsecrD                           lambda0~1 phi~t D~1 sigma~1    9    9 -6402.413 12822.83 12823.37 394.070     0

z_JSSAsecrD                             lambda0~1 phi~1 D~1 sigma~1    4    4 -6408.461 12824.92 12825.04 396.166     0

lambda_JSSAsecrD                        lambda0~1 phi~1 D~1 sigma~1    4    4 -6408.461 12824.92 12825.04 396.166     0

Constant_JSSAsecrD                      lambda0~1 phi~1 D~1 sigma~1    4    4 -6408.461 12824.92 12825.04 396.166     0

D_JSSAsecrD                             lambda0~1 phi~1 D~t sigma~1   10   10 -6402.623 12825.25 12825.91 396.489     0

bbetween_primary_sigma_JSSAsecrD lambda0~1 phi~1 D~1 sigma~bsession    5    5 -6408.405 12826.81 12826.99 398.055     0

 

Could anyone please tell me if I’m on the right track and how I might be able to extract and plot the real estimates of sigma? From the best model the real estimates of sigma are:

 

sigma 
 session b estimate SE.estimate       lcl       ucl
       1 0 673.8997    39.16538 601.34754  755.2052
       2 0 778.5471    86.74708 625.81009  968.5617
       3 0 791.3380    74.58550 657.86115  951.8967
       4 0 995.2895   180.40817 697.68427 1419.8417
       5 0 196.5815    27.84028 148.93399  259.4727
       6 0 152.1714    13.29254 128.22671  180.5874
       7 0 727.2378    70.33320 601.66444  879.0195
       1 1 496.1397    39.51190 424.43919  579.9527
       2 1 573.1835    47.83213 486.69956  675.0352
       3 1 582.6004    61.86439 473.13442  717.3928
       4 1 732.7540   166.03729 469.98224 1142.4440
       5 1 144.7276    27.54590  99.66506  210.1648
       6 1 112.0319    10.89286  92.59328  135.5514
       7 1 535.4084    67.42479 418.30407  685.2961

 

I don’t understand how to interpret these values. If b=1 then within primary session sigma is constant?

 

Distance analyses by other authors on another site found that bandicoots will move into the centre of web array of detectors and density estimates become inflated. Within the mask I’ve set the buffer to include the full extent of the island and spacing is based on sigma.

 

Code used

Capthist

IA<-read.capthist(captfile="GB_capthist.txt",

                  trapfile = list("GB_traplocs1.txt",

                                  "GB_traplocs2.txt",

                                  "GB_traplocs3.txt",

                                  "GB_traplocs4.txt",

                                  "GB_traplocs5.txt",

                                  "GB_traplocs6.txt",

                                  "GB_traplocs7.txt"),

                  detector = "multi",

                  fmt=c("trapID","XY"))

intervals(IA)<-c(67,46,179,368,705,823)

summary(IA)

 

Mask

fence = readOGR(dsn=wd,layer="Doole_island_LWM_GDA94MGA50", verbose=FALSE)

##Suggested values for buffer=4signma; and spacing=0.2-1 sigma

##To find out sigma from capthist object use:

RPSV(IA,CC =TRUE)

##In this case sigma ranges from 29 to 39

mask.clipped = make.mask(traps=traps(IA),

                         buffer=2000,

                         spacing=35,

                         poly=fence,

                         poly.habitat = TRUE)

plot(mask.clipped)

 

Model

sigma_Session+t_JSSAsecrD<-openCR.fit(IA,mask=mask.clipped,type='JSSAsecrD', ncores=4,model = sigma ~ Session+t,

                                          method="Nelder-Mead", details = list(control = list(maxit = 500)),start=bwithin_primary_sigma_JSSAsecrD)

saveRDS(sigma_Session+t_JSSAsecrD, file = "sigma_Session+t_JSSAsecrD_IA_JSSAsecrD_DOOLE.rds")

 

Cheryl Lohr

Research Scientist, Animal Science Program

DBCA Biodiversity and Conservation Science

Location: 37 Wildlife Pl, Woodvale, WA 6026

Mail: Woodvale Wildlife Research Centre

Locked Bag 104 Bentley Delivery Centre

WA 6983

Ph: 94055150 (internal ext 5750)

Mob: 0407335004

 

 


This message is confidential and is intended for the recipient named above. If you are not the intended recipient, you must not disclose, use or copy the message or any part of it. If you received this message in error, please notify the sender immediately by replying to this message, then delete it from your system.

Murray Efford

unread,
Jun 23, 2020, 12:26:28 AM6/23/20
to secr
Hi Cheryl
Is there a biological explanation for low sigma in sessions 5-6, e.g., recruitment of young animals? It's dangerous to model varying sigma while keeping lambda0 constant.
Regarding plotting, what do you get with plot(fittedmodel, par='sigma')? Specify newdata if necessary. See ?plot.openCR. Also predict(fittedmodel) and ?predict.openCR.
Murray
Reply all
Reply to author
Forward
0 new messages