Question about incorporating telemetry data

74 views
Skip to first unread message

drd11

unread,
Aug 19, 2020, 3:20:18 PM8/19/20
to secr
My capture data consist of deer pellets genetically identified to individual. Unfortunately, we have very few recaptures of individuals but we do have telemetry data.

I have successfully run models where I used the telemetry data to estimate sigma and then declare sigma to be a fixed parameter.

Now I want toincorporate the telemetry data into the capthist object under type="independent" study design (we never captured pellets from our radio-collared deer). I'm thinking this should incorporate some uncertainty about sigma using the telemetry data rather than setting sigma to be a fixed parameter (correct?).

I have 4 sessions (years) with 1 occasion in each session. I appear to have successfully created the capthist object, 

### Create trap object
  trCH <- read.capthist(fnCH,"detector.txt", detector="count", verify=F)
  summary(trCH)

I created the telemetry object, and get no error message but it appears there is only 1 animal in session 1, when my data contains telemetry data from 6 animals...
> ### Create telemetry object
>   telem <- read.table(fntelem,col.names = c("session","uniqdeer","occasion","utm.easting","utm.northing","sex"))
>   head(telem)
  session       uniqdeer occasion utm.easting utm.northing sex
1       1 8159_8160M2015        1    274642.8      4506815   M
2       1 8159_8160M2015        1    274871.4      4506519   M
3       1 8159_8160M2015        1    274487.8      4507548   M
4       1 8159_8160M2015        1    273530.1      4507194   M
5       1 8159_8160M2015        1    274435.6      4506969   M
6       1 8159_8160M2015        1    275044.4      4506739   M
>   teCH <- read.telemetry(fntelem, verify=T)
No errors found :-)
>   summary(teCH)
$`1`
Object class       capthist 
Detector type      telemetry 
Telemetry type     independent 

Counts by occasion 
                    1 Total
n                   1     1
u                   1     1
f                   1     1
M(t+1)              1     1
losses              0     0
detections        101   101
detectors visited   0     0
detectors used      0     0

Empty histories :  1 
1 telemetered animals, 0 detected
101-101 locations per animal, mean =  101, sd = NA 

Individual covariates
 V6   
 M:1  


$`2`
Object class       capthist 
Detector type      telemetry 
Telemetry type     independent 

Counts by occasion 
                    1 Total
n                   2     2
u                   2     2
f                   2     2
M(t+1)              2     2
losses              0     0
detections        205   205
detectors visited   0     0
detectors used      0     0

Empty histories :  2 
2 telemetered animals, 0 detected
102-103 locations per animal, mean =  102.5, sd = 0.71 

Individual covariates
 V6   
 M:2  


$`3`
Object class       capthist 
Detector type      telemetry 
Telemetry type     independent 

Counts by occasion 
                    1 Total
n                   2     2
u                   2     2
f                   2     2
M(t+1)              2     2
losses              0     0
detections        205   205
detectors visited   0     0
detectors used      0     0

Empty histories :  2 
2 telemetered animals, 0 detected
102-103 locations per animal, mean =  102.5, sd = 0.71 

Individual covariates
 V6   
 M:2  


$`4`
Object class       capthist 
Detector type      telemetry 
Telemetry type     independent 

Counts by occasion 
                    1 Total
n                   1     1
u                   1     1
f                   1     1
M(t+1)              1     1
losses              0     0
detections        507   507
detectors visited   0     0
detectors used      0     0

Empty histories :  1 
1 telemetered animals, 0 detected
507-507 locations per animal, mean =  507, sd = NA 

Individual covariates
 V6   
 M:1  


>   sigmatelem <- RPSV(teCH, CC=TRUE)
>   sigmatelem  
$`1`
[1] 859.2692

$`2`
[1] 565.1725

$`3`
[1] 823.8823

$`4`
[1] 316.4994

and combined the two using addTelemetry

> ### Join telemetry and trapping objects
>   CHI <- addTelemetry(trCH, teCH, type = 'independent')
No errors found :-)
Warning messages:
1: In (function (detectionCH, telemetryCH, type = c("concurrent", "dependent",  :
  covariates in telemetryCH do not match detectionCH so covariates discarded
2: In (function (detectionCH, telemetryCH, type = c("concurrent", "dependent",  :
  covariates in telemetryCH do not match detectionCH so covariates discarded
3: In (function (detectionCH, telemetryCH, type = c("concurrent", "dependent",  :
  covariates in telemetryCH do not match detectionCH so covariates discarded
4: In (function (detectionCH, telemetryCH, type = c("concurrent", "dependent",  :
  covariates in telemetryCH do not match detectionCH so covariates discarded
>   summary(CHI)
$`1`
Object class       capthist 
Detector type      count, telemetry 
Telemetry type     independent 
Detector number    200 
Average spacing    100 m 
x-range            267457 278608 m 
y-range            4503596 4517656 m 

 Usage range by occasion
    1 2
min 0 0
max 1 1

Counts by occasion 
                    1   2 Total
n                  18   1    19
u                  18   1    19
f                  19   0    19
M(t+1)             18  19    19
losses              0   0     0
detections         21 101   122
detectors visited  19   0    19
detectors used    200   0   200

Empty histories :  1 
1 telemetered animals, 0 detected
101-101 locations per animal, mean =  101, sd = NA 

$`2`
Object class       capthist 
Detector type      count, telemetry 
Telemetry type     independent 
Detector number    200 
Average spacing    100 m 
x-range            267457 278608 m 
y-range            4503596 4517656 m 

 Usage range by occasion
    1 2
min 0 0
max 1 1

Counts by occasion 
                    1   2 Total
n                  25   2    27
u                  25   2    27
f                  27   0    27
M(t+1)             25  27    27
losses              0   0     0
detections         28 205   233
detectors visited  24   0    24
detectors used    200   0   200

Empty histories :  2 
2 telemetered animals, 0 detected
102-103 locations per animal, mean =  102.5, sd = 0.71 

$`3`
Object class       capthist 
Detector type      count, telemetry 
Telemetry type     independent 
Detector number    200 
Average spacing    100 m 
x-range            267457 278608 m 
y-range            4503596 4517656 m 

 Usage range by occasion
    1 2
min 0 0
max 1 1

Counts by occasion 
                    1   2 Total
n                  12   2    14
u                  12   2    14
f                  14   0    14
M(t+1)             12  14    14
losses              0   0     0
detections         13 205   218
detectors visited  11   0    11
detectors used    200   0   200

Empty histories :  2 
2 telemetered animals, 0 detected
102-103 locations per animal, mean =  102.5, sd = 0.71 

$`4`
Object class       capthist 
Detector type      count, telemetry 
Telemetry type     independent 
Detector number    200 
Average spacing    100 m 
x-range            267457 278608 m 
y-range            4503596 4517656 m 

 Usage range by occasion
    1 2
min 0 0
max 1 1

Counts by occasion 
                    1   2 Total
n                  43   1    44
u                  43   1    44
f                  44   0    44
M(t+1)             43  44    44
losses              0   0     0
detections         52 507   559
detectors visited  37   0    37
detectors used    200   0   200

Empty histories :  1 
1 telemetered animals, 0 detected
507-507 locations per animal, mean =  507, sd = NA 

I attached a plot of the mask, the captures, and telemetry data

but when I run the model the estimation routine does not vary from the starting values provided (or even when letting secr guess the starting values). It runs for about 40 iterations and just stops and always gets "-Inf" for the log-likelihood estimate.

Here's the secr.fit model statement. Each mask is the same for each session

Sigma <- secr.fit(capthist=CHI, model=list(D~session, g0~1, sigma~1),  
                  start=c(-5,-.35,.33,-3.4,-3,6), detectfn="HHN",
                  ncores=6, mask=c("mask1","mask2","mask3","mask4"), 
                  method="Newton-Raphson", verify=F)

Any mistakes being made? Is the problem with reading in the telemetry data?Suggestions for options to try? Is this approach not going to work if there are very few (if any) captures at different stations?

Thanks,

Duane
Mask capture telemetry objects.pdf

Murray Efford

unread,
Aug 27, 2020, 7:42:05 PM8/27/20
to secr
Hi there
Sorry this has been lying around for a while - my telemetry aversion shows, and I'm rusty on it.
Did you use the 'data' argument of read.telemetry? It seems to work for me with the attached data file and my working version of secr:
Murray
testdf <- read.table('teCHcapt.txt')
teCH2
<- read.telemetry(data = testdf, covnames = 'sex')
plot
(teCH2, tracks = TRUE)
summary
(teCH2)
# Object class       capthist
# Detector type      telemetry
# Telemetry type     independent
#
# Counts by occasion
# 1 Total
# n                  12    12
# u                  12    12
# f                  12    12
# M(t+1)             12    12
# losses              0     0
# detections        120   120
# detectors visited   0     0
# detectors used      0     0
#
# Empty histories :  12
# 12 telemetered animals, 0 detected
# 10-10 locations per animal, mean =  10, sd = 0
#
# Individual covariates
# sex  
# F:7  
# M:5  


teCHcapt.txt
Reply all
Reply to author
Forward
0 new messages