D ~ session + p_for , g0 ~ bk + h2, sigma ~ bk + h2, where p_for is a density surface covariate (percent forest).
The model converges okay but these are my beta estimates:
beta SE.beta lcl ucl
D -27.5916799 3.94217131 -35.3181937 -19.8651661
D.session2 -0.7066832 0.23189244 -1.1611840 -0.2521824
D.p_for 22.0948167 3.97872999 14.2966492 29.8929842
g0 -1.5428311 0.24975504 -2.0323420 -1.0533203
g0.bk 1.8027544 0.26653832 1.2803489 2.3251599
g0.h22 -2.7485302 0.18378184 -3.1087360 -2.3883244
sigma 6.7902722 0.09227502 6.6094165 6.9711279
sigma.bk 5.6755250 43.76648404 -80.1052075 91.4562574
sigma.h22 1.2994172 0.12515557 1.0541168 1.5447176
pmix.h22 0.2117920 0.34604190 -0.4664377 0.8900217
Should I be concerned about the large SEs for sigma.bk and pmix.h22? I know about the problems with estimation for h2 models but the estimates without the h2 parameter are obviously low. The estimates for the above model are reasonable and I have used different starting values and cannot find any obvious problems with multimodality. Thanks!