Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains viewable.
Dismiss

A Clockwork Rover for Venus (AREE)

21 views
Skip to first unread message

baa...@earthlink.net

unread,
Sep 7, 2017, 8:01:03 PM9/7/17
to

https://www.jpl.nasa.gov/news/news.php?feature=6933

A Clockwork Rover for Venus
Jet Propulsion Laboratory
August 25, 2017

A good watch can take a beating and keep on ticking. With the right parts,
can a rover do the same on a planet like Venus?

A concept inspired by clockwork computers and World War I tanks could
one day help us find out. The design is being explored at NASA's Jet Propulsion
Laboratory in Pasadena, California.

The Automaton Rover for Extreme Environments (AREE) is funded for study
by the NASA Innovative Advanced Concepts program. The program offers small
grants to develop early stage technology, allowing engineers to work out
their ideas.

AREE was first proposed in 2015 by Jonathan Sauder, a mechatronics engineer
at JPL. He was inspired by mechanical computers, which use levers and
gears to make calculations rather than electronics.

By avoiding electronics, a rover might be able to better explore Venus.
The planet's hellish atmosphere creates pressures that would crush most
submarines. Its average surface temperature is 864 degrees Fahrenheit
(462 degrees Celsius), high enough to melt lead.

Steampunk computing

Mechanical computers have been used throughout history, most often as
mathematical tools like adding machines. The most famous might be Charles
Babbage's Difference Engine, a 19th century invention for calculating
algebraic equations. The oldest known is the Antikythera mechanism, a
device used by ancient Greeks to predict astronomical phenomena like eclipses.

Mechanical computers were also developed as works of art. For hundreds
of years, clockwork mechanisms were used to create automatons for wealthy
patrons. In the 1770s, a Swiss watchmaker named Pierre Jaquet-Droz created
"The Writer," an automaton that could be programmed to write any combination
of letters.

Sauder said these analog technologies could help where electronics typically
fail. In extreme environments like the surface of Venus, most electronics
will melt in high temperatures or be corroded by sulfuric acid in the
atmosphere.

"Venus is too inhospitable for kind of complex control systems you have
on a Mars rover," Sauder said. "But with a fully mechanical rover, you
might be able to survive as long as a year."

Wind turbines in the center of the rover would power these computers,
allowing it to flip upside down and keep running. But the planet's environment
would offer plenty of challenges.

The extreme planet

No spacecraft has survived the Venusian surface for more than a couple
hours.

Venus' last visitors were the Soviet Venera and Vega landers. In the 1970s
and 1980s, they sent back a handful of images that revealed a craggy,
gas-choked world.

"When you think of something as extreme as Venus, you want to think really
out there," said Evan Hilgemann, a JPL engineer working on high temperature
designs for AREE. "It's an environment we don't know much about beyond
what we've seen in Soviet-era images."

Sauder and Hilgemann are preparing to bake mechanical prototypes, allowing
them to study how thermal expansion could affect their moving parts. Some
components of the Soviet landers had actually been designed with this
heat expansion in mind: their parts wouldn't work properly until they
were heated to Venusian temperatures.

Tank treads for Venus

AREE includes a number of other innovative design choices.

Mobility is one challenge, considering there are so many unknowns about
the Venusian surface. Sauder's original idea was inspired by the "Strandbeests"
created by Dutch artist Theo Jansen. These spider-like structures have
spindly legs that can carry their bulk across beaches, powered solely
by wind.

Ultimately, they seemed too unstable for rocky terrain. Sauder started
looking at World War I tank treads as an alternative. These were built
to roll over trenches and craters.

Another problem will be communications. Without electronics, how would
you transmit science data? Current plans are inspired by another age-old
technology: Morse code.

An orbiting spacecraft could ping the rover using radar. The rover would
have a radar target, which if shaped correctly, would act like "stealth
technology in reverse," Sauder said. Stealth planes have special shapes
that disperse radar signals; Sauder is exploring how to shape these targets
to brightly reflect signals instead. Adding a rotating shutter in front
of the radar target would allow the rover to turn the bright, reflected
spot on and off, communicating much like signal lamps on Navy ships.

Now in its second phase of NIAC development, the JPL team is selecting
parts of the AREE concept to be refined and prototyped. Team members hope
to flesh out a rover concept that will eventually be able to study the
geology of Venus and perhaps drill a few samples.

For more information about AREE, go to:

https://www.nasa.gov/directorates/spacetech/niac/2017_Phase_I_Phase_II/Automaton_Rover_Extreme_Environments

News Media Contact
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew...@jpl.nasa.gov

2017-228
0 new messages