Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains viewable.
Dismiss

EINSTEINIANS ADMIT FRAUD

51 views
Skip to first unread message

Pentcho Valev

unread,
Jul 27, 2015, 3:05:33 AM7/27/15
to
http://www.reformation.edu/scripture-science-stott/aarch/pages/10-soddy-to-nobel-prizewinners.htm
Frederick Soddy: "Incidentally the attempt to verify this during a recent solar eclipse, provided the world with the most disgusting spectacle perhaps ever witnessed of the lengths to which a preconceived notion can bias what was supposed to be an impartial scientific inquiry. For Eddington, who was one of the party, and ought to have been excluded as an ardent supporter of the theory that was under examination, in his description spoke of the feeling of dismay which ran through the expedition when it appeared at one time that Einstein might be wrong! Remembering that in this particular astronomical investigation, the corrections for the normal errors of observation - due to diffraction, temperature changes, and the like - exceeded by many times the magnitude of the predicted deflection of the star's ray being looked for, one wonders exactly what this sort of "science" is really worth."

http://backreaction.blogspot.com/2015/04/a-wonderful-100th-anniversary-gift-for.html
Sabine Hossenfelder: "As light carries energy and is thus subject of gravitational attraction, a ray of light passing by a massive body should be slightly bent towards it. This is so both in Newton's theory of gravity and in Einstein's, but Einstein's deflection is by a factor two larger than Newton's. (...) As history has it, Eddington's original data actually wasn't good enough to make that claim with certainty. His measurements had huge error bars due to bad weather and he also might have cherry-picked his data because he liked Einstein's theory a little too much. Shame on him."

http://www.forbes.com/sites/chadorzel/2015/07/22/three-experiments-that-show-relativity-is-real/
Chad Orzel: "Eddington's measurement produced one of the greatest newspaper headlines of all time (PDF), but the shift he saw was really small. (The difference is small enough, in fact, that I've heard some people suggest the agreement is "too good," and he might've been biased toward confirming a theory he really liked.)"

http://discovermagazine.com/2008/mar/20-things-you-didn.t-know-about-relativity
"The eclipse experiment finally happened in 1919. Eminent British physicist Arthur Eddington declared general relativity a success, catapulting Einstein into fame and onto coffee mugs. In retrospect, it seems that Eddington fudged the results, throwing out photos that showed the wrong outcome. No wonder nobody noticed: At the time of Einstein's death in 1955, scientists still had almost no evidence of general relativity in action."

http://www.newscientist.com/article/mg16321935.300-ode-to-albert.html
New Scientist: Ode to Albert: "Enter another piece of luck for Einstein. We now know that the light-bending effect was actually too small for Eddington to have discerned at that time. Had Eddington not been so receptive to Einstein's theory, he might not have reached such strong conclusions so soon, and the world would have had to wait for more accurate eclipse measurements to confirm general relativity."

http://www.amazon.com/dp/0553380168
Stephen Hawking: "Einsteins prediction of light deflection could not be tested immediately in 1915, because the First World War was in progress, and it was not until 1919 that a British expedition, observing an eclipse from West Africa, showed that light was indeed deflected by the sun, just as predicted by the theory. This proof of a German theory by British scientists was hailed as a great act of reconciliation between the two countries after the war. It is ionic, therefore, that later examination of the photographs taken on that expedition showed the errors were as great as the effect they were trying to measure. Their measurement had been sheer luck, or a case of knowing the result they wanted to get, not an uncommon occurrence in science."

http://irfu.cea.fr/Phocea/file.php?file=Ast/2774/RELATIVITE-052-456.pdf
Jean-Marc Bonnet-Bidaud: "Le monde entier a cru pendant plus de cinquante ans à une théorie non vérifiée. Car, nous le savons aujourd'hui, les premières preuves, issues notamment d'une célèbre éclipse de 1919, n'en étaient pas. Elles reposaient en partie sur des manipulations peu avouables visant à obtenir un résultat connu à l'avance, et sur des mesures entachées d'incertitudes, quand il ne s'agissait pas de fraudes caractérisées. (...) L'expédition britannique envoie deux équipes indépendantes sur le trajet de l'éclipse : l'une dirigée par Andrew Crommelin dans la ville de Sobral, dans le nord du Brésil, l'autre conduite par Eddington lui-même sur l'île de Principe, en face de Libreville, au Gabon. Le matériel embarqué est des plus sommaires au regard des moyens actuels : une lunette astronomique de seulement 20 cm de diamètre en chaque lieu, avec un instrument de secours de 10 cm à Sobral. Pour éviter l'emploi d'une monture mécanique trop lourde à transporter, la lumière est dirigée vers les lunettes par de simples miroirs mobiles, ce qui se révélera être une bien mauvaise idée. La stratégie est assez complexe. Il s'agit d'exposer des plaques photographiques durant l'éclipse pour enregistrer la position d'un maximum d'étoiles autour du Soleil, puis de comparer avec des plaques témoins de la même région du ciel obtenues de nuit, quelques mois plus tard. La différence des positions entre les deux séries de plaques, avec et sans le Soleil, serait la preuve de l'effet de la relativité et le résultat est bien sûr connu à l'avance. Problème non négligeable : la différence attendue est minuscule. Au maximum, au bord même du Soleil, l'écart prévu est seulement de un demi dix-millième de degré, soit très précisément 1,75 seconde d'arc (1,75"), correspondant à l'écart entre les deux bords d'une pièce de monnaie observée à 3 km de distance ! Or, quantités d'effets parasites peuvent contaminer les mesures, la qualité de l'émulsion photographique, les variations dans l'atmosphère terrestre, la dilatation des miroirs... Le jour J, l'équipe brésilienne voit le ciel se dégager au dernier moment mais Eddington n'aperçoit l'éclipse qu'à travers les nuages ! Sa quête est très maigre, tout juste deux plaques sur lesquelles on distingue à peine cinq étoiles. Pressé de rentrer en Angleterre, Eddington ne prend même pas la précaution d'attendre les plaques témoins. Les choses vont beaucoup mieux à Sobral : 19 plaques avec plus d'une dizaine d'étoiles et huit plaques prises avec la lunette de secours. L'équipe reste sur place deux mois pour réaliser les fameuses plaques témoins et, le 25 août, tout le monde est en Angleterre. Eddington se lance dans des calculs qu'il est le seul à contrôler, décidant de corriger ses propres mesures avec des plaques obtenues avec un autre instrument, dans une autre région du ciel, autour d'Arcturus. Il conclut finalement à une déviation comprise entre 1,31" et 1,91" : le triomphe d'Einstein est assuré ! Très peu sûr de sa méthode, Eddington attend anxieusement les résultats de l'autre expédition qui arrivent en octobre, comme une douche froide : suivant une méthode d'analyse rigoureuse, l'instrument principal de Sobral a mesuré une déviation de seulement 0,93". La catastrophe est en vue. S'ensuivent de longues tractations entre Eddington et Dyson, directeurs respectifs des observatoires de Cambridge et de Greenwich. On repêche alors les données de la lunette de secours de Sobral, qui a le bon goût de produire comme résultat un confortable 1,98", et le tour de passe-passe est joué. Dans la publication historique de la Royal Society, on lit comme justification une simple note : "Il reste les plaques astrographiques de Sobral qui donnent une déviation de 0,93", discordantes par une quantité au-delà des limites des erreurs accidentelles. Pour les raisons déjà longuement exposées, peu de poids est accordé à cette détermination." Plus loin, apparaît la conclusion catégorique: "Les résultats de Sobral et Principe laissent peu de doute qu'une déviation de la lumière existe au voisinage du Soleil et qu'elle est d'une amplitude exigée par la théorie de la relativité généralisée d'Einstein." Les données gênantes ont donc tout simplement été escamotées."

Pentcho Valev

Pentcho Valev

unread,
Jul 27, 2015, 1:44:23 PM7/27/15
to
Organized group fraud in Einsteiniana (Arthur Eddington was the organizer):

http://quantumwavepublishing.com/the-puppy-dogs-tale/
"Eddington's calculations suggested that the gravitational redshift of light emitted from Sirius B would be the equivalent of a 20 kilometres per second Dopper shift. The following year Adams made precise spectrographic observations of Sirius B and measured the shift in the lines in its spectrum. After accounting for the shift due to the orbital motion of the white dwarf, there remained a redshift equivalent to a Doppler shift of 19 kilometres per second, just as Eddington had predicted. This was acclaimed by Eddington as a great triumph for Einstein's theory of general relativity."

http://preterism.ning.com/forum/topics/can-we-trust-the-data
"Consider the case of astronomer Walter Adams. In 1925 he tested Einstein's theory of relativity by measuring the red shift of the binary companion of Sirius, brightest star in the sky. Einstein's theory predicted a red shift of six parts in a hundred thousand; Adams found just such an effect. A triumph for relativity. However, in 1971, with updated estimates of the mass and radius of Sirius, it was found that the predicted red shift should have been much larger - 28 parts in a hundred thousand. Later observations of the red shift did indeed measure this amount, showing that Adams' observations were flawed. He "saw" what he had expected to see."

http://adsabs.harvard.edu/abs/2010AAS...21530404H
"In January 1924 Arthur Eddington wrote to Walter S. Adams at the Mt. Wilson Observatory suggesting a measurement of the "Einstein shift" in Sirius B and providing an estimate of its magnitude. Adams' 1925 published results agreed remarkably well with Eddington's estimate. Initially this achievement was hailed as the third empirical test of General Relativity (after Mercury's anomalous perihelion advance and the 1919 measurement of the deflection of starlight). It has been known for some time that both Eddington's estimate and Adams' measurement underestimated the true Sirius B gravitational redshift by a factor of four."

http://adsabs.harvard.edu/full/1980QJRAS..21..246H
"...Eddington asked Adams to attempt the measurement. (...) ...Adams reported an average differential redshift of nineteen kilometers per second, very nearly the predicted gravitational redshift. Eddington was delighted with the result... (...) In 1928 Joseph Moore at the Lick Observatory measured differences between the redshifts of Sirius and Sirius B... (...) ...the average was nineteen kilometers per second, precisely what Adams had reported. (...) More seriously damaging to the reputation of Adams and Moore is the measurement in the 1960s at Mount Wilson by Jesse Greenstein, J.Oke, and H.Shipman. They found a differential redshift for Sirius B of roughly eighty kilometers per second."

http://irfu.cea.fr/Phocea/file.php?file=Ast/2774/RELATIVITE-052-456.pdf
Jean-Marc Bonnet-Bidaud: "Autour de l'étoile brillante Sirius, on découvre une petite étoile, Sirius B, à la fois très chaude et très faiblement lumineuse. Pour expliquer ces deux particularités, il faut supposer que l'étoile est aussi massive que le Soleil et aussi petite qu'une planète comme la Terre. C'est Eddington lui-même qui aboutit à cette conclusion dont il voit vite l'intérêt : avec de telles caractéristiques, ces naines blanches sont extrêmement denses et leur gravité très puissante. Le décalage vers le rouge de la gravitation est donc 100 fois plus élevé que sur le Soleil. Une occasion inespérée pour mesurer enfin quelque chose d'appréciable. Eddington s'adresse aussitôt à Walter Adams, directeur de l'observatoire du mont Wilson, en Californie, afin que le télescope de 2,5 m de diamètre Hooker entreprenne les vérifications. Selon ses estimations, basées sur une température de 8 000 degrés de Sirius B, mesurée par Adams lui-même, le décalage vers le rouge prédit par la relativité, en s'élevant à 20 km/s, devrait être facilement mesurable. Adams mobilise d'urgence le grand télescope et expose 28 plaques photographiques pour réaliser la mesure. Son rapport, publié le 18 mai 1925, est très confus car il mesure des vitesses allant de 2 à 33 km/s. Mais, par le jeu de corrections arbitraires dont personne ne comprendra jamais la logique, le décalage passe finalement à 21 km/s, plus tard corrigé à 19 km/s, et Eddington de conclure : "Les résultats peuvent être considérés comme fournissant une preuve directe de la validité du troisième test de la théorie de la relativité générale." Adams et Eddington se congratulent, ils viennent encore de "prouver" Einstein. Ce résultat, pourtant faux, ne sera pas remis en cause avant 1971. Manque de chance effectivement, la première mesure de température de Sirius B était largement inexacte : au lieu des 8 000 degrés envisagés par Eddington, l'étoile fait en réalité près de 30 000 degrés. Elle est donc beaucoup plus petite, sa gravité est plus intense et le décalage vers le rouge mesurable est de 89 km/s. C'est ce qu'aurait dû trouver Adams sur ses plaques s'il n'avait pas été "influencé" par le calcul erroné d'Eddington. L'écart est tellement flagrant que la suspicion de fraude a bien été envisagée."

Pentcho Valev

JanPB

unread,
Jul 27, 2015, 2:18:50 PM7/27/15
to
On Monday, July 27, 2015 at 10:44:23 AM UTC-7, Pentcho Valev wrote:
> Organized group fraud in Einsteiniana (Arthur Eddington was the organizer):

The links are nothing new, the comments by Pentcho garbage as usual.

--
Jan

JanPB

unread,
Jul 27, 2015, 2:20:07 PM7/27/15
to
Stop crossposting this stuff to sci.math. What's wrong with you?

--
Jan

wobbly

unread,
Jul 28, 2015, 6:25:12 PM7/28/15
to
Pentcho Valev wrote:

> http://quantumwavepublishing.com/the-puppy-dogs-tale/
> "Eddington's calculations suggested that the gravitational redshift of
> light emitted from Sirius B would be the equivalent of a 20 kilometres
> per second Dopper shift. The following year Adams made precise
> spectrographic observations of Sirius B and measured the shift in the
> lines in its spectrum. After accounting for the shift due to the
> orbital motion of the white dwarf, there remained a redshift equivalent
> to a Doppler shift of 19 kilometres per second, just as Eddington had
> predicted. This was acclaimed by Eddington as a great triumph for
> Einstein's theory of general relativity."

Moreover, the light coming from Sun is red-shifted as well. Which means
that the Sun is much brighter than it appears seen from Earth.

wobbly

unread,
Jul 29, 2015, 12:33:43 PM7/29/15
to
Pentcho Valev wrote:

> http://backreaction.blogspot.com/2015/04/a-wonderful-100th-anniversary-
gift-for.html
> Sabine Hossenfelder: "As light carries energy and is thus subject of
> gravitational attraction, a ray of light passing by a massive body
> should be slightly bent towards it. This is so both in Newton's theory
> of gravity and in Einstein's, but Einstein's deflection is by a factor
> two larger than Newton's. (...) As history has it, Eddington's original
> data actually wasn't good enough to make that claim with certainty. His
> measurements had huge error bars due to bad weather and he also might
> have cherry-picked his data because he liked Einstein's theory a little
> too much. Shame on him."

This is actually logical. For instance the light emitted from a black hole
is extremely red shifted. Hence, its light must be extremely bright and
powerful at its surface. But Nature found a way to protect us from that
constant emitted dangerous gamma rays. Very funny indeed. I understand
more Relativity than anyone else.

pnal...@gmail.com

unread,
Jul 29, 2015, 12:40:24 PM7/29/15
to
On Wednesday, July 29, 2015 at 9:33:43 AM UTC-7, wobbly wrote:

> This is actually logical. For instance the light emitted from a black hole
> is extremely red shifted. Hence, its light must be extremely bright and
> powerful at its surface. But Nature found a way to protect us from that
> constant emitted dangerous gamma rays. Very funny indeed. I understand
> more Relativity than anyone else.

The only problem with this, of course, is that light cannot be emitted from a black hole. 'Near it', sure, 'from it', no.

So much for your superior understanding of relativity :>)

\Paul A

wobbly

unread,
Jul 29, 2015, 12:59:33 PM7/29/15
to
That's why you feel nothing. As being red-shifted towards infinity. I knew
this thing is not obvious to the vast majority. Not even for the
experienced is not obvious. Below the event horizon a black hole must be
extremely bright, as a consequence of that.

pnal...@gmail.com

unread,
Jul 29, 2015, 1:25:29 PM7/29/15
to
Perhaps, but below the event horizon this brightness is trapped by gravity and cannot escape...

Pentcho Valev

unread,
Aug 1, 2015, 11:16:44 AM8/1/15
to
Dying relativity, irrelevant to science, revitalized by fraud:

http://www.press.uchicago.edu/Misc/Chicago/519517.html
"How odd, then, that arguably the most elegant scientific theory ever devised should slowly wither into the decades that followed this remarkable beginning. Those who knew him best have written that already by the 1930s Einstein's interest in general relativity had almost completely lapsed. Having by then moved to Princeton, he could count the number of colleagues working in this field on just one hand. Relativity theory had become irrelevant to science - a situation that sadly persisted up until Einstein's death. He would never know about the breathtaking discovery that would be announced just a few years later - a splendid confirmation of another prediction made several decades earlier. This experimental achievement - a compelling demonstration in 1960 by the Harvard physicists Robert Pound and Glen Rebka that time slows down in the presence of gravity - sparked the revolution that followed during relativity's golden age..."

Fifty years later it is safe to admit the fraud - Einstein's relativity has become a universal religion with virtually no opposition:

http://www.einstein-online.info/spotlights/redshift_white_dwarfs
Albert Einstein Institute: "One of the three classical tests for general relativity is the gravitational redshift of light or other forms of electromagnetic radiation. However, in contrast to the other two tests - the gravitational deflection of light and the relativistic perihelion shift -, you do not need general relativity to derive the correct prediction for the gravitational redshift. A combination of Newtonian gravity, a particle theory of light, and the weak equivalence principle (gravitating mass equals inertial mass) suffices. (...) The gravitational redshift was first measured on earth in 1960-65 by Pound, Rebka, and Snider at Harvard University..."

Pentcho Valev

wobbly

unread,
Aug 1, 2015, 11:28:23 AM8/1/15
to
Pentcho Valev wrote:

> "you do not need general relativity to derive the correct
> prediction for the gravitational redshift. A combination of Newtonian
> gravity, a particle theory of light, and the weak equivalence principle
> (gravitating mass equals inertial mass) suffices. (...) The
> gravitational redshift was first measured on earth in 1960-65 by Pound,
> Rebka, and Snider at Harvard University..."

This is just extraordinary.
0 new messages