Dynamic occupancy goodness of fit test

300 views
Skip to first unread message

jessiec...@gmail.com

unread,
Oct 14, 2020, 4:21:30 AM10/14/20
to unmarked
Hi there,

I am please needing some advice/clarification on how to determine whether a dataset is appropriate to use (i.e. not over- or under-dispersed) for dynamic occupancy modelling according the outcome of the mb.gof.test for the global occupancy model. I understand that the c-hat value needs to be as close to 1 as possible (extreme values >3/4 indicate lack of fit). In addition to an appropriate c-hat value, does the chi-square p-value need to be greater than 0.05 in order for the data to be appropriate or is the c-hat value of more importance?

Below are the outcomes of goodness-of-fit tests for two global occupancy models. Would both datasets be appropriate to use or only the dataset used in Model 1?

Model 1
Goodness-of-fit for dynamic occupancy model
Number of seasons:  10 
Chi-square statistic:
 Season 1  Season 2  Season 3  Season 4  Season 5  Season 6  Season 7  Season 8 
   2.8930    2.4356    2.4501    8.9530    4.1339    3.6981    1.2422    0.8141 
 Season 9 Season 10 
   7.2423    4.1897 
Total chi-square = 38.0521 
Number of bootstrap samples = 1000
P-value = 0.068
Quantiles of bootstrapped statistics:
  0%  25%  50%  75% 100% 
 9.1 21.4 25.8 30.9 55.5 
Estimate of c-hat = 1.44

Model 2
Goodness-of-fit for dynamic occupancy model
Number of seasons:  10 
Chi-square statistic:
 Season 1  Season 2  Season 3  Season 4  Season 5  Season 6  Season 7  Season 8 
   1.5827   21.4999    7.0277   11.1775    4.0588    2.2721    1.3821    6.3738 
 Season 9 Season 10 
   4.6023    4.9692 
Total chi-square = 64.9461 
Number of bootstrap samples = 1000
P-value = 0
Quantiles of bootstrapped statistics:
  0%  25%  50%  75% 100% 
  11   23   27   33   62 
Estimate of c-hat = 2.29 

All the best,
Jess

Marc J. Mazerolle

unread,
Oct 14, 2020, 7:11:18 AM10/14/20
to unmarked

Hi Jess,


The chi-square suggests lack-of-fit, more so for model 2 than model 1 (marginal). The c-hat estimates > 1 indicate that the lack of fit would be due to overdispersion. You could then proceed with your analysis and adjust your inferences by the c-hat.


Best,


Marc

____________________
Marc J. Mazerolle
Professeur agrégé et directeur du bac. en environnements naturels et aménagés
Département des sciences du bois et de la forêt
2405 rue de la Terrasse
Université Laval
Québec, Québec G1V OA6, Canada
Tel: (418) 656-2131 ext. 407120
Email: marc.ma...@sbf.ulaval.ca

Veuillez noter que je suis en télétravail. Le meilleur moyen de me rejoindre est par courriel.

De : unma...@googlegroups.com <unma...@googlegroups.com> de la part de jessiec...@gmail.com <jessiec...@gmail.com>
Envoyé : 14 octobre 2020 04:21
À : unmarked
Objet : [unmarked] Dynamic occupancy goodness of fit test
 
[Externe UL*]
--
You received this message because you are subscribed to the Google Groups "unmarked" group.
To unsubscribe from this group and stop receiving emails from it, send an email to unmarked+u...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/unmarked/15eb8593-a95b-4628-9e6a-4cfe50bdac1cn%40googlegroups.com.
*ATTENTION : L’émetteur de ce courriel est externe à l’Université Laval.
Évitez de cliquer sur un hyperlien, d’ouvrir une pièce jointe ou de transmettre des informations si vous ne connaissez pas l’expéditeur du courriel. En cas de doute, contactez l’équipe de soutien informatique de votre unité ou hamec...@ulaval.ca.


jessiec...@gmail.com

unread,
Nov 13, 2020, 5:50:15 AM11/13/20
to unmarked
Hi Marc,

Thank you for your reply last month. Just to clarify, if I am following a step-wise approach to my dynamic occupancy models, whereby I determine probability of detection first (i.e keeping psi, col and ext constant) do I need to use QAIC (with the c-hat value of the global model) to determine which factors best describe detection to use in the subsequent models?

All the best,
Jess

Marc J. Mazerolle

unread,
Nov 13, 2020, 7:46:52 AM11/13/20
to unma...@googlegroups.com

Hi Jessie,


Yes, I would use QAIC using the c-hat of the global model to determine the most parsimonious model for detection probability.


Best,


Marc


____________________
Marc J. Mazerolle
Professeur agrégé et directeur du bac. en environnements naturels et aménagés
Département des sciences du bois et de la forêt
2405 rue de la Terrasse
Université Laval
Québec, Québec G1V OA6, Canada
Tel: (418) 656-2131 ext. 407120
Email: marc.ma...@sbf.ulaval.ca

Veuillez noter que je suis en télétravail. Le meilleur moyen de me rejoindre est par courriel.
Envoyé : 13 novembre 2020 05:50
À : unmarked
Objet : Re: [unmarked] Dynamic occupancy goodness of fit test
 
[Externe UL*]

jessica comley

unread,
Nov 13, 2020, 7:52:00 AM11/13/20
to unma...@googlegroups.com
Perfect.

Thank you. 

All the best, 
Jess 

Reply all
Reply to author
Forward
0 new messages