a(n) = A078371 = 5,21,45,77,117,165,221 a(n) = 2*A142463(n+1)-1 a(n) = 8*A000127(n+1)-3 Triangular numbers a(n) = 2*A001844(n+1)-5 a(n) = 4*A002061(n+2)-7 a(n) = 2*A097080(n+1)-9 a(n) = 4*A028387(n)+1 a(n) = 2*A059993(n)+3 a(n) = 8*A000096(n)+5 a(n) = 2 * A071355(n) - 1 a(n) = 2 * A071355(n) - 3 a(n) = 2 * A071355(n) - 5 a(n) = 2 * A071355(n) - 7 a(n) = 2 * A071355(n) - 9 a(n) = 2 * A071355(n) - 11 .........
--
You received this message because you are subscribed to the Google Groups "SeqFan" group.
To unsubscribe from this group and stop receiving emails from it, send an email to seqfan+un...@googlegroups.com.
To view this discussion visit https://groups.google.com/d/msgid/seqfan/6010c357-eb9e-4315-b5ef-0d29208c2668n%40googlegroups.com.
To view this discussion visit https://groups.google.com/d/msgid/seqfan/32cc595e-ad1b-43ac-bc3c-34b3b31bbfd5n%40googlegroups.com.
It looks like you can do it with pentagonal numbers: 8/3*A000326(n+5/3)-23/9 = 4n^2+12n+5On Sun, Oct 12, 2025 at 6:20 PM Ali Ekler <aliek...@gmail.com> wrote:Dear Daniel
thank you for triangle numbers and ı cant see problem for A097080.12 Ekim 2025 Pazar tarihinde saat 21:42:51 UTC itibarıyla dmo...@gmail.com şunları yazdı: