sage: h = SymmetricFunctions(QQ).h()
sage: S = LazySymmetricFunctions(h)
sage: E = S(lambda n: h[n])
sage: T = LazySymmetricFunctions(tensor([h, h]))
sage: X = tensor([h[1],h[[]]])
sage: Y = tensor([h[[]],h[1]])
sage: A = T.undefined()
sage: B = T.undefined()
sage: T.define_implicitly([A, B], [A - X*E(B), B - Y*E(A)])
sage: A[:5]
[h[1] # h[],
h[1] # h[1],
h[1] # h[2] + h[1, 1] # h[1],
h[1] # h[3] + 2*h[1, 1] # h[1, 1] + h[2, 1] # h[1]]
:-)
diff --git a/src/sage/rings/lazy_series_ring.py b/src/sage/rings/lazy_series_ring.py
index 02a477e4e0..f168435ac9 100644
--- a/src/sage/rings/lazy_series_ring.py
+++ b/src/sage/rings/lazy_series_ring.py
@@ -3147,6 +3147,7 @@ class LazyCompletionGradedAlgebra(LazySeriesRing):
from sage.misc.mrange import cartesian_product_iterator
from sage.categories.tensor import tensor
B = self._internal_poly_ring.base_ring()
+ B = B.change_ring(R)
if self._arity == 1:
return list(B.homogeneous_component_basis(n))
l = []
Thank you so much!
Martin