Dear Nek Community,
I am after a quick verification of an implementation. I am computing the volume-integrated squared velocity gradient (see attached equation), and the snippet below is from userchk.
My understanding is that bm1 stores the lumped nodal volume weight so that summing bm1 over all nodes recovers the domain volume. Is this assumption correct? If not, what is the recommended/most accurate way to evaluate this integral?
Thanks,
Chinthaka.
c-----------------------------------------------------------------------
subroutine userchk
include 'SIZE'
include 'TOTAL'
real viscous_diss
parameter(lt=lx1*ly1*lz1*lelv)
common /myjunk/ dxux(lx1,ly1,lz1,lelv),
$ dxuz(lx1,ly1,lz1,lelv),dyux(lx1,ly1,lz1,lelv),
$ dyuz(lx1,ly1,lz1,lelv),dzux(lx1,ly1,lz1,lelv),
$ dzuz(lx1,ly1,lz1,lelv),dxuy(lx1,ly1,lz1,lelv),
$ dyuy(lx1,ly1,lz1,lelv),dzuy(lx1,ly1,lz1,lelv)
call gradm1(dxux,dyux,dzux,vx) ! 1st derivative
call gradm1(dxuy,dyuy,dzuy,vy)
call gradm1(dxuz,dyuz,dzuz,vz)
viscous_diss = (glsc3(dxux,bm1,dxux,lt)
$ +glsc3(dyux,bm1,dyux,lt)+glsc3(dzuz,bm1,dzuz,lt)
$ +glsc3(dzux,bm1,dzux,lt)+glsc3(dxuy,bm1,dxuy,lt)
$ +glsc3(dyuy,bm1,dyuy,lt)+glsc3(dzuy,bm1,dzuy,lt)
$ +glsc3(dxuz,bm1,dxuz,lt)+glsc3(dyuz,bm1,dyuz,lt))
return
end
c-----------------------------------------------------------------------