--
Go to http://kaldi-asr.org/forums.html find out how to join
---
You received this message because you are subscribed to the Google Groups "kaldi-help" group.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi-help+...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/896d5817-f2a0-473f-a662-3895ceaeeb26%40googlegroups.com.
are you sure you didn't modify the script? run git diff <filename>I'd start looking at train_stage being set to something else than the default -10 or the common_egs_dir defined.I'm not sure if it's necessary to create the egs dir beforehand, if you do not care about the IO balancingy.
On Sat, Jul 20, 2019 at 12:05 PM Jaskaran Singh Puri <jaskar...@gmail.com> wrote:
While running this script: fisher_callhome_spanish/s5/local/chain/run_tdnn_1g.sh--I get an error, "egs has missing or malformed files"It is unable to locate the "egs/info/feat_dim"There's no "egs" directory getting created by the script nor are any of the files in the "info" dir.I compared the structure to aspire's egs, there are lot of files that are not getting creating in the info dirAlso, I don't see any "mkdir -p $dir/egs" in this spanish scriptCan we use the aspire's run_tdnn_7b.sh for spanish as this seems to be a bug?
Go to http://kaldi-asr.org/forums.html find out how to join
---
You received this message because you are subscribed to the Google Groups "kaldi-help" group.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi...@googlegroups.com.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi-help+...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/c25c6c5a-58f7-4e9c-b741-6a8dc40483ac%40googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/c25c6c5a-58f7-4e9c-b741-6a8dc40483ac%40googlegroups.com.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi-help+...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/cdbfc435-48dd-491c-89e3-c05418ae7af2%40googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/cdbfc435-48dd-491c-89e3-c05418ae7af2%40googlegroups.com.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi-help+...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/b1fc6f4e-8bbc-4b58-8a4c-e80a6457006c%40googlegroups.com.
yes
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/b1fc6f4e-8bbc-4b58-8a4c-e80a6457006c%40googlegroups.com.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi-help+...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/0fd899a7-7021-4f30-80ce-a7cd71b99fd8%40googlegroups.com.
local/chain/run_tdnn_1g.sh
local/chain/run_tdnn_1g.sh: creating neural net configs using the xconfig parser
tree-info exp/chain/tri5a_tree/tree
nnet3-init /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//init.config /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//init.raw
LOG (nnet3-init[5.5]:main():nnet3-init.cc:80) Initialized raw neural net and wrote it to /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//init.raw
nnet3-info /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//init.raw
nnet3-init /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.config /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.raw
LOG (nnet3-init[5.5]:main():nnet3-init.cc:80) Initialized raw neural net and wrote it to /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.raw
nnet3-info /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.raw
nnet3-init /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.config /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.raw
LOG (nnet3-init[5.5]:main():nnet3-init.cc:80) Initialized raw neural net and wrote it to /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.raw
nnet3-info /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs//ref.raw
steps/nnet3/xconfig_to_configs.py --xconfig-file /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs/network.xconfig --config-dir /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/configs/
steps/nnet3/chain/train.py --stage=-10 --cmd run.pl --mem 4G --feat.online-ivector-dir exp/nnet3/ivectors_train_sp_hires --feat.cmvn-opts --norm-means=false --norm-vars=false --chain.xent-regularize 0.1 --chain.leaky-hmm-coefficient 0.1 --chain.l2-regularize 0.0 --chain.apply-deriv-weights false --chain.lm-opts=--num-extra-lm-states=2000 --trainer.dropout-schedule 0,0@0.20,0.3@0.50,0 --trainer.srand 0 --trainer.max-param-change 2.0 --trainer.num-epochs 4 --trainer.frames-per-iter 5000000 --trainer.optimization.num-jobs-initial 1 --trainer.optimization.num-jobs-final=1 --trainer.optimization.initial-effective-lrate 0.0005 --trainer.optimization.final-effective-lrate 0.00005 --trainer.num-chunk-per-minibatch 128,64 --trainer.optimization.momentum 0.0 --egs.chunk-width 140,100,160 --egs.chunk-left-context 0 --egs.chunk-right-context 0 --egs.opts --frames-overlap-per-eg 0 --cleanup.remove-egs true --use-gpu true --feat-dir data/train_sp_hires --tree-dir exp/chain/tri5a_tree --lat-dir exp/tri5a_lats_nodup_sp --dir /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn
['steps/nnet3/chain/train.py', '--stage=-10', '--cmd', 'run.pl --mem 4G', '--feat.online-ivector-dir', 'exp/nnet3/ivectors_train_sp_hires', '--feat.cmvn-opts', '--norm-means=false --norm-vars=false', '--chain.xent-regularize', '0.1', '--chain.leaky-hmm-coefficient', '0.1', '--chain.l2-regularize', '0.0', '--chain.apply-deriv-weights', 'false', '--chain.lm-opts=--num-extra-lm-states=2000', '--trainer.dropout-schedule', '0,0...@0.20,0...@0.50,0', '--trainer.srand', '0', '--trainer.max-param-change', '2.0', '--trainer.num-epochs', '4', '--trainer.frames-per-iter', '5000000', '--trainer.optimization.num-jobs-initial', '1', '--trainer.optimization.num-jobs-final=1', '--trainer.optimization.initial-effective-lrate', '0.0005', '--trainer.optimization.final-effective-lrate', '0.00005', '--trainer.num-chunk-per-minibatch', '128,64', '--trainer.optimization.momentum', '0.0', '--egs.chunk-width', '140,100,160', '--egs.chunk-left-context', '0', '--egs.chunk-right-context', '0', '--egs.opts', '--frames-overlap-per-eg 0', '--cleanup.remove-egs', 'true', '--use-gpu', 'true', '--feat-dir', 'data/train_sp_hires', '--tree-dir', 'exp/chain/tri5a_tree', '--lat-dir', 'exp/tri5a_lats_nodup_sp', '--dir', '/notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn']
2019-07-21 15:00:30,662 [steps/nnet3/chain/train.py:35 - <module> - INFO ] Starting chain model trainer (train.py)
2019-07-21 15:00:30,672 [steps/nnet3/chain/train.py:273 - train - INFO ] Arguments for the experiment
{'alignment_subsampling_factor': 3,
'apply_deriv_weights': False,
'backstitch_training_interval': 1,
'backstitch_training_scale': 0.0,
'chunk_left_context': 0,
'chunk_left_context_initial': -1,
'chunk_right_context': 0,
'chunk_right_context_final': -1,
'chunk_width': '140,100,160',
'cleanup': True,
'cmvn_opts': '--norm-means=false --norm-vars=false',
'combine_sum_to_one_penalty': 0.0,
'command': 'run.pl --mem 4G',
'compute_per_dim_accuracy': False,
'deriv_truncate_margin': None,
'dir': '/notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn',
'do_final_combination': True,
'dropout_schedule': '0,0...@0.20,0...@0.50,0',
'egs_command': None,
'egs_dir': None,
'egs_opts': '--frames-overlap-per-eg 0',
'egs_stage': 0,
'email': None,
'exit_stage': None,
'feat_dir': 'data/train_sp_hires',
'final_effective_lrate': 5e-05,
'frame_subsampling_factor': 3,
'frames_per_iter': 5000000,
'initial_effective_lrate': 0.0005,
'input_model': None,
'l2_regularize': 0.0,
'lat_dir': 'exp/tri5a_lats_nodup_sp',
'leaky_hmm_coefficient': 0.1,
'left_deriv_truncate': None,
'left_tolerance': 5,
'lm_opts': '--num-extra-lm-states=2000',
'max_lda_jobs': 10,
'max_models_combine': 20,
'max_objective_evaluations': 30,
'max_param_change': 2.0,
'momentum': 0.0,
'num_chunk_per_minibatch': '128,64',
'num_epochs': 4.0,
'num_jobs_final': 1,
'num_jobs_initial': 1,
'online_ivector_dir': 'exp/nnet3/ivectors_train_sp_hires',
'preserve_model_interval': 100,
'presoftmax_prior_scale_power': -0.25,
'proportional_shrink': 0.0,
'rand_prune': 4.0,
'remove_egs': True,
'reporting_interval': 0.1,
'right_tolerance': 5,
'samples_per_iter': 400000,
'shrink_saturation_threshold': 0.4,
'shrink_value': 1.0,
'shuffle_buffer_size': 5000,
'srand': 0,
'stage': -10,
'train_opts': [],
'tree_dir': 'exp/chain/tri5a_tree',
'use_gpu': 'yes',
'xent_regularize': 0.1}
2019-07-21 15:00:30,976 [steps/nnet3/chain/train.py:327 - train - INFO ] Creating phone language-model
2019-07-21 15:00:47,141 [steps/nnet3/chain/train.py:332 - train - INFO ] Creating denominator FST
copy-transition-model exp/chain/tri5a_tree/final.mdl /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/0.trans_mdl
LOG (copy-transition-model[5.5]:main():copy-transition-model.cc:62) Copied transition model.
2019-07-21 15:00:48,357 [steps/nnet3/chain/train.py:339 - train - INFO ] Initializing a basic network for estimating preconditioning matrix
2019-07-21 15:00:48,510 [steps/nnet3/chain/train.py:361 - train - INFO ] Generating egs
2019-07-21 15:00:48,511 [steps/libs/nnet3/train/common.py:491 - verify_egs_dir - ERROR ] The egs dir /notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/egs has missing or malformed files.
Traceback (most recent call last):
File "steps/nnet3/chain/train.py", line 624, in main
train(args, run_opts)
File "steps/nnet3/chain/train.py", line 400, in train
egs_right_context_final))
File "steps/libs/nnet3/train/common.py", line 399, in verify_egs_dir
egs_dir)).readline())
FileNotFoundError: [Errno 2] No such file or directory: '/notebooks/jpuri/training_v3/spanish/exp/chain/multipsplice_tdnn/egs/info/feat_dim'
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/0fd899a7-7021-4f30-80ce-a7cd71b99fd8%40googlegroups.com.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi-help+...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/7970f694-a50d-4f97-937e-aa224e86709a%40googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/7970f694-a50d-4f97-937e-aa224e86709a%40googlegroups.com.
To unsubscribe from this group and stop receiving emails from it, send an email to kaldi-help+...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/cdbfc435-48dd-491c-89e3-c05418ae7af2%40googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/kaldi-help/CAEWAuyRHKOm4PnT9XfmmU8YW7NED8dpZ3sj-BXSSumDFxY75mw%40mail.gmail.com.