Hello,everyone
I want to use my large data set to train a tdnn chain model . The dataset is about 5000 hours, if I make the speed up ,it will become 15000 hours. For such a large data set ,how should I set neural network parameters? Who can give me some advice? If the network's parameters are too large, maybe the decode speed will become slow.
Here are my plain:
relu-batchnorm-layer name=tdnn1 dim=1200
relu-batchnorm-layer name=tdnn2 input=Append(-1,1) dim=1200
relu-batchnorm-layer name=tdnn3 input=Append(-1,1) dim=1200
relu-batchnorm-layer name=tdnn4 input=Append(-3,3) dim=1200
relu-batchnorm-layer name=tdnn5 input=Append(-3,3) dim=1200
relu-batchnorm-layer name=tdnn6 input=Append(-3,3) dim=1200
relu-batchnorm-layer name=tdnn7 input=Append(-3,3) dim=1200
relu-batchnorm-layer name=tdnn8 input=Append(-3,3) dim=1200
attention-relu-renorm-layer name=attention1 num-heads=15 value-dim=80 key-dim=40 num-left-inputs=5 num-right-inputs=2 time-stride=3
relu-batchnorm-layer name=prefinal-chain input=attention1 dim=1200 target-rms=0.5
output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5
relu-batchnorm-layer name=prefinal-xent input=attention1 dim=1200 target-rms=0.5
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5