Hi,
I am getting different pairwise and morphol.disparity procrustes variance outputs for a procD.pgls object. I ran a similar analysis with the example data (which I pasted bellow) to confirm that it was not just a issue with my specific dataset. In my case, I'm getting significant differences using morphol.disparity and not so when using pairwise. I hope you can help me understand this difference, I've read the help files but couldn't figure it out by myself. Also, I learn a lot from this community, thank you all.
I'm using R 4.0.5, geomorph 4.0.0, RRPP 1.0.0
data(plethspecies)
Y.gpa<-gpagen(plethspecies$land)
gp.end<-factor(c(0,0,1,0,0,1,1,0,0))
names(gp.end)<-plethspecies$phy$tip
gdf <- geomorph.data.frame(Y.gpa, phy = plethspecies$phy, gp.end = gp.end)
pleth.pgls <- procD.pgls(coords ~ Csize * gp.end, phy = phy, data = gdf, iter = 999)
pw<-pairwise(pleth.pgls,groups=gdf$gp.end, print.progress=F)
summary(pwt, test.type="var", confidence=0.95, stat.table=F)
morphol.disparity(f1 = pleth.pgls, groups = ~ gp.end, data = gdf, iter = 999, print.progress = FALSE)
Pairwise output
Observed variances by group
0 1
0.002153583 0.001570511
Pairwise distances between variances
0 1
0 0.0000000000 0.0005830723
1 0.0005830723 0.0000000000
morphol.disparity output
Procrustes variances for defined groups
0 1
0.0004061528 0.0001983589
Pairwise absolute differences between variances
0 1
0 0.0000000000 0.0002077938
1 0.0002077938 0.0000000000