Good evening,
First and foremost, I want to thank you for the useful tool you have developed.
I've been using the FAMD function from the FactoMineR package, but I have a minor question. My understanding is that FAMD utilizes Singular Value Decomposition (SVD) as its decomposition method. Specifically, for a matrix X, it computes the SVD on the matrix
t(t(x)*sqrt(col.w))*sqrt(row.w)
where
row.w = rep(1/nrow(x), nrow(x))
and
col.w = rep(1,ncol(x))
If the number of left singular vectors and right singular vectors to compute is set to ncp (the parameter in the FAMD function), this decomposition corresponds to the svd.triplet function in FactoMineR.
I confirmed this using the R base function svd(), and it works correctly when all variables are continuous (applying PCA in FactoMineR). However, it doesn't work within the context of mixed data, assuming that categorical variables are transformed into continuous ones (via one-hot encoding), which I know is not appropriate since FAMD treats categorical variables as such.
Therefore, I wanted to ask if you could provide some guidance on how to correctly apply SVD in the case of mixed data or what the structure of the correlation matrix should be.
Best regards,
A.M.
Pontificia Universidad Javeriana
--
Vous recevez ce message, car vous êtes abonné au groupe Google Groupes "FactoMineR users".
Pour vous désabonner de ce groupe et ne plus recevoir d'e-mails le concernant, envoyez un e-mail à l'adresse factominer-use...@googlegroups.com.
Cette discussion peut être lue sur le Web à l'adresse https://groups.google.com/d/msgid/factominer-users/8e990552-d8df-4cc4-b1cd-fab23c7d2220n%40googlegroups.com.
Cette discussion peut être lue sur le Web à l'adresse https://groups.google.com/d/msgid/factominer-users/0aef9e91-3c20-4ca7-94b9-2d96f738ecfd%40agrocampus-ouest.fr.