Expert Advice needed: PERIODIC_EFIELD with metal nano-particle

212 views
Skip to first unread message

Sam Broderick

unread,
Jun 13, 2022, 5:42:26 AM6/13/22
to cp2k
Dear cp2k aficionados,


It seems to me that I have run into a strong limitation of cp2k, but I am not know enough to anything close to sure. My goal: determine spectroscopic response of an organic molecule near a metal nano-particle.

On the one hand, &DIAGONALIZATION is strongly recommended for metals. On the other hand, TRAVIS requires &PERIODIC_EFIELD to determine the polarizability, but this means &OT. I am having severe difficulties with the production run with a thermostat.

Is cp2k the right tool or am I just not doing it right (e.g., something better than DZVP-MOLOPT-SR-GTH and GTH-PBE-q)

Would you please have a look at my .inp and provide me with some tips? My boss is quite dissatisfied with node hour usage while I try to figure this out.

Many, many thanks
Sam
Au79-ot-production.inp

Sam Broderick

unread,
Jun 13, 2022, 6:19:20 AM6/13/22
to cp2k
An additional question: after a global run, where the last step did not converge within the WALLTIME I set in the input:

 *** SCF run terminated - exceeded requested execution time:   86340.000 seconds.

 *** Execution time now:    86340.037 seconds.

What is stored in the restart data? The last converged MD step or the one that did not converge? Could this be why I get this error when I try to start a production run form this? Sorry for the newbie questions.

READ RESTART : WARNING : nspin is not equal

 *******************************************************************************
 *   ___                                                                       *
 *  /   \                                                                      *
 * [ABORT]                                                                     *
 *  \___/                     Reducing nspin is not possible.                  *
 *    |                                                                        *
 *  O/|                                                                        *
 * /| |                                                                        *
 * / \                                                          qs_mo_io.F:708 *
 *******************************************************************************


 ===== Routine Calling Stack =====

            8 read_mo_set_from_restart
            7 calculate_first_density_matrix
            6 scf_env_initial_rho_setup
            5 init_scf_run
            4 qs_energies
            3 qs_forces
            2 qs_mol_dyn_low
            1 CP2K

Sam Broderick

unread,
Jun 13, 2022, 6:24:03 AM6/13/22
to cp2k
The output from the production one (the global run is large show I include the end here:

MD| ***************************************************************************
 MD| Step number                                                            5104
 MD| Time [fs]                                                       2552.000000
 MD| Conserved quantity [hartree]                            -0.262582505304E+04
 MD| ---------------------------------------------------------------------------
 MD|                                          Instantaneous             Averages
 MD| CPU time per MD step [s]                     26.061410            33.822750
 MD| Energy drift per atom [K]           0.374503646625E+03   0.205283418423E+03
 MD| Potential energy [hartree]         -0.262589862674E+04  -0.262592631376E+04
 MD| Kinetic energy [hartree]            0.137757326096E+00   0.119719069562E+00
 MD| Temperature [K]                             376.625724           327.309498
 MD| ***************************************************************************

 Spin 1

 Number of electrons:                                                        435
 Number of occupied orbitals:                                                435
 Number of molecular orbitals:                                               435

 Spin 2

 Number of electrons:                                                        434
 Number of occupied orbitals:                                                434
 Number of molecular orbitals:                                               434

 Number of orbital functions:                                               1975
 Number of independent orbital functions:                                   1975

 Extrapolation method: PS Nth order
 Extrapolation order:  2


 SCF WAVEFUNCTION OPTIMIZATION

  ----------------------------------- OT ---------------------------------------
  Minimizer      : DIIS                : direct inversion
                                         in the iterative subspace
                                         using   7 DIIS vectors
                                         safer DIIS on
  Preconditioner : FULL_SINGLE_INVERSE : inversion of
                                         H + eS - 2*(Sc)(c^T*H*c+const)(Sc)^T
  Precond_solver : DEFAULT
  stepsize       :    0.08000000                  energy_gap     :    0.08000000
  ortho_irac     : CHOL                           irac_degree    :             4
  max_irac       :            50                  eps_irac       :   0.10000E-09
  eps_irac_switch:   0.10000E-01                  eps_irac_quick_exit: 0.100E-04
  on_the_fly_loc : F
  ----------------------------------- OT ---------------------------------------

  Step     Update method      Time    Convergence         Total energy    Change
  ------------------------------------------------------------------------------
     1 OT DIIS     0.80E-01    1.6     0.00000775     -2625.8983262879 -2.63E+03
     2 OT DIIS     0.80E-01    1.7     0.00000405     -2625.8983310938 -4.81E-06
     3 OT DIIS     0.80E-01    1.7     0.00000353     -2625.8983328495 -1.76E-06
     4 OT DIIS     0.80E-01    1.7     0.00000334     -2625.8983350122 -2.16E-06
     5 OT DIIS     0.80E-01    1.8     0.00000315     -2625.8983386726 -3.66E-06
     6 OT DIIS     0.80E-01    1.7     0.00000296     -2625.8983443709 -5.70E-06
     7 OT DIIS     0.80E-01    1.7     0.00000269     -2625.8983545672 -1.02E-05
     8 OT DIIS     0.80E-01    1.7     0.00000249     -2625.8983637011 -9.13E-06
     9 OT DIIS     0.80E-01    1.7     0.00000233     -2625.8983715220 -7.82E-06
    10 OT DIIS     0.80E-01    1.7     0.00000220     -2625.8983782333 -6.71E-06
    11 OT DIIS     0.80E-01    1.8     0.00000210     -2625.8983844367 -6.20E-06
    12 OT DIIS     0.80E-01    1.7     0.00000203     -2625.8983895822 -5.15E-06
    13 OT DIIS     0.80E-01    1.7     0.00000197     -2625.8983941766 -4.59E-06
    14 OT DIIS     0.80E-01    1.7     0.00000191     -2625.8983986569 -4.48E-06
    15 OT DIIS     0.80E-01    1.7     0.00000185     -2625.8984037404 -5.08E-06
    16 OT DIIS     0.80E-01    1.7     0.00000178     -2625.8984097126 -5.97E-06
    17 OT DIIS     0.80E-01    1.7     0.00000166     -2625.8984185968 -8.88E-06
    18 OT DIIS     0.80E-01    1.6     0.00000154     -2625.8984272390 -8.64E-06
    19 OT DIIS     0.80E-01    1.7     0.00000142     -2625.8984357725 -8.53E-06
    20 OT DIIS     0.80E-01    1.7     0.00000130     -2625.8984426842 -6.91E-06
    21 OT DIIS     0.80E-01    1.7     0.00000121     -2625.8984475524 -4.87E-06
    22 OT DIIS     0.80E-01    1.7     0.00000113     -2625.8984512475 -3.70E-06
    23 OT DIIS     0.80E-01    1.7     0.00000106     -2625.8984545255 -3.28E-06
    24 OT DIIS     0.80E-01    1.7     0.00000099     -2625.8984573944 -2.87E-06


 *** SCF run terminated - exceeded requested execution time:   86340.000 seconds.

 *** Execution time now:    86340.037 seconds.

  *** SCF run converged in    24 steps ***


  Electronic density on regular grids:       -869.0000000000        0.0000000000
  Core density on regular grids:              868.9999999985       -0.0000000015
  Total charge density on r-space grids:       -0.0000000014
  Total charge density g-space grids:          -0.0000000014

  Overlap energy of the core charge distribution:               0.00000146582976
  Self energy of the core charge distribution:              -4570.41375350254566
  Core Hamiltonian energy:                                   1458.28031159567945
  Hartree energy:                                             899.55026105138484
  Exchange-correlation energy:                               -412.42098926839282
  Dispersion energy:                                           -0.89428873636523

  Total energy:                                             -2625.89845739440943

  outer SCF iter =    1 RMS gradient =   0.99E-06 energy =      -2625.8984573944
  outer SCF loop converged in   1 iterations or   24 steps


 ENERGY| Total FORCE_EVAL ( QS ) energy [a.u.]:            -2625.898460009454993

 *** MD run terminated - exceeded requested execution time:   86340.000 seconds.

 *** Execution time now:    86343.048 seconds.


Au79-ot-production-error.out

Krack Matthias (PSI)

unread,
Jun 13, 2022, 7:27:30 AM6/13/22
to cp...@googlegroups.com

Hi Sam

 

it seems that you try to restart from an OT run with spin polarization (LSD/UKS ON) using an input in which LSD/UKS is set OFF or not set (the default is OFF), but it is not possible to change the spin-polarization on restart.

 

The OT run should have written the last converged (spin-polarized) wavefunction to the wfn restart file.

 

And right, PERIODIC_EFIELD is only implement for OT.

HTH

 

Matthias

--
You received this message because you are subscribed to the Google Groups "cp2k" group.
To unsubscribe from this group and stop receiving emails from it, send an email to cp2k+uns...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/1cb69247-862f-4dba-85a8-4953bed216e9n%40googlegroups.com.

Sam Broderick

unread,
Jun 13, 2022, 8:27:12 AM6/13/22
to cp2k
Thank you so much on the UKS! I don't see the forest for the trees by now, with all the trying out.

Jürg Hutter

unread,
Jun 13, 2022, 8:34:57 AM6/13/22
to cp...@googlegroups.com
Hi

if this is a cluster, you don't need the periodic Efield.

This is the input for a diagonalization run. What are your OT settings?

regards

JH

________________________________________
Sent: Monday, June 13, 2022 11:42 AM
To: cp2k
Subject: [CP2K:17144] Expert Advice needed: PERIODIC_EFIELD with metal nano-particle
--
You received this message because you are subscribed to the Google Groups "cp2k" group.
To unsubscribe from this group and stop receiving emails from it, send an email to cp2k+uns...@googlegroups.com<mailto:cp2k+uns...@googlegroups.com>.
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/2d334de9-f0ab-4c24-920a-52c664e06d74n%40googlegroups.com<https://groups.google.com/d/msgid/cp2k/2d334de9-f0ab-4c24-920a-52c664e06d74n%40googlegroups.com?utm_medium=email&utm_source=footer>.

Sam Broderick

unread,
Jun 13, 2022, 8:47:29 AM6/13/22
to cp2k
Hello Prof. Hutter

Thank you for looking into this! It is truncated octohedral Au-79 particle/cluster based on a literature search.

Do I understand correctly, that you are suggesting to use a &VIBRATIONAL_ANALYSIS? Am I missing something and this includes Raman (which is the reason that I am currently using TRAVIS and &PERIODIC_EFIELD? I was under the impression it is IR reflection/absorption only.

Kind Regards
Sam Broderick

Jürg Hutter

unread,
Jun 13, 2022, 9:22:38 AM6/13/22
to cp...@googlegroups.com
Hi

I'm not an expert in this, but it looks to me you have the following options:

1) Use PERIODIC NONE, without smearing and a constant
field (EFIELD keyword). Do MD and use TRAVIS to analyze.

2) Do MD and calculate the polarizability tensor along the trajectory and
derive Raman spectra from the auto-correlation.

3) Calculate the IR spectra and perform finite difference calculations
of the polarizability (without smearing) along (selected) normal modes.
Calculate the Raman intensity from this data.

Maybe some spectra experts can help to find the most efficient method.

regards

JH

________________________________________
From: cp...@googlegroups.com <cp...@googlegroups.com> on behalf of Sam Broderick <wave...@gmail.com>
Sent: Monday, June 13, 2022 2:47 PM
To: cp2k
Subject: Re: [CP2K:17152] Expert Advice needed: PERIODIC_EFIELD with metal nano-particle
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/c206960f-95a6-4f80-861f-b68672908ebfn%40googlegroups.com<https://groups.google.com/d/msgid/cp2k/c206960f-95a6-4f80-861f-b68672908ebfn%40googlegroups.com?utm_medium=email&utm_source=footer>.

Sam Broderick

unread,
Jun 13, 2022, 10:25:49 AM6/13/22
to cp2k
Is there anyone you would recommend?

Sam Broderick

unread,
Jun 15, 2022, 6:00:15 AM6/15/22
to cp2k
My saga continues! I have been able to get reasonable performance with:
    &OT
        ALGORITHM IRAC
        PRECONDITIONER FULL_SINGLE_INVERSE
        MINIMIZER DIIS

However, I cannot convince &E_DENSITY_BQB or &E_DENSITY_CUBE to produce any data/files. It just runs through and does not show any density information. Does anyone have any ideas? I know that there is a warning about the symmetry module, which I don't have installed, but the production run worked OK.

Many, many thanks,
Sam

Au79-production.inp
Au79-Ex.inp
Au79-Ex.out
Au79-production.out

Marcella Iannuzzi

unread,
Jun 15, 2022, 6:49:40 AM6/15/22
to cp2k

Dear Sam, 
The print statement is only in the REFTRAJ run, where 
is set "false". Since no electronic structure calculation is done, no density cube file can be printed.


Regards
Marcella

Sam Broderick

unread,
Jun 15, 2022, 7:29:32 AM6/15/22
to cp2k
How stupid of me. Thank you!
Reply all
Reply to author
Forward
0 new messages