Optimisation of Si(100) slab does not converge

142 views
Skip to first unread message

DMITRII Drugov

unread,
Nov 29, 2020, 8:24:02 PM11/29/20
to cp2k
Good day dear CP2K users, could you please have a look at my .in file to see did I specify ABC cell parameters and ALPHA_BETA_GAMMA for Si(100) with 16.29210*16.29210*5.76 A^3. I am using TZVP-MOLOPT-GTH and I allowed two top layer to relax while other bulk part is frozen. In total it only 42 atoms our of 85 is under relaxation. My system didn't reach any convergence yet, despite I run it for 30 hour on supercomputer with 120 GB memory and 36 CPU. However, I used same .in file for gold and Na slabs and with around 70-60 atoms with DZVP, and it converged within 1-2 hours. Do you think it's normal for TZVP, should I wait longer? Or smth wrong with my .in setting?

Regards,
Dmitrii

 --------  Informations at step =     3 ------------
  Optimization Method        =                LBFGS
  Total Energy               =         2.9038335460
  Real energy change         =       -14.0555995686
  Decrease in energy         =                  YES
  Used time                  =            15200.012

  Convergence check :
  Max. step size             =         0.3482436711
  Conv. limit for step size  =         0.0030000000
  Convergence in step size   =                   NO
  RMS step size              =         0.0816981844
  Conv. limit for RMS step   =         0.0015000000
  Convergence in RMS step    =                   NO
  Max. gradient              =         1.6813091629
  Conv. limit for gradients  =         0.0004500000
  Conv. for gradients        =                   NO
  RMS gradient               =         0.4396446909
  Conv. limit for RMS grad.  =         0.0003000000
  Conv. for gradients        =                   NO

my setting are:
&GLOBAL
  PROJECT Si100_optimisation 
  RUN_TYPE GEO_OPT
  PRINT_LEVEL MEDIUM
&END GLOBAL
&FORCE_EVAL
  METHOD QS
  &DFT
    BASIS_SET_FILE_NAME BASIS_MOLOPT
    POTENTIAL_FILE_NAME GTH_POTENTIALS
    CHARGE 0
    MULTIPLICITY 1
    &MGRID
      CUTOFF 800
      NGRIDS 5
      REL_CUTOFF 70
    &END MGRID
    &QS
      EPS_DEFAULT 1.0E-12
      WF_INTERPOLATION ASPC
    &END QS
   &SCF
      SCF_GUESS ATOMIC
      EPS_SCF 1.0E-7
      MAX_SCF 1000
      CHOLESKY INVERSE
      ADDED_MOS 20
      &SMEAR ON
        METHOD FERMI_DIRAC
        ELECTRONIC_TEMPERATURE [K] 300
      &END SMEAR
      &DIAGONALIZATION
        ALGORITHM STANDARD
      &END DIAGONALIZATION
      &MIXING
        METHOD BROYDEN_MIXING
        ALPHA 0.4         
        NBROYDEN 8
      &END MIXING
    &END SCF
    &XC
      &XC_FUNCTIONAL
&PBE
&END PBE
      &END XC_FUNCTIONAL
      &vdW_POTENTIAL
    DISPERSION_FUNCTIONAL PAIR_POTENTIAL
    &PAIR_POTENTIAL
        PARAMETER_FILE_NAME dftd3.dat
        TYPE DFTD3
        REFERENCE_FUNCTIONAL PBE
        R_CUTOFF 15.0
    &END PAIR_POTENTIAL
     &END vdW_POTENTIAL
    &END XC
    &POISSON
      PERIODIC xy
      POISSON_SOLVER ANALYTIC
    &END POISSON
  &END DFT
  &SUBSYS
    &CELL
      ABC 16.404 16.404 50.0
      ALPHA_BETA_GAMMA 90.0 90.0 120.0
      PERIODIC xy
    &END CELL
    &COORD
      Si        17.64977      -17.64977       -4.07302
      Si        17.64977      -12.21907       -4.07302
      Si        17.64977       -6.78837       -4.07302
      Si        17.64977       -1.35767       -4.07302
      Si        12.21907      -17.64977       -4.07302
      Si        16.29210      -16.29210       -5.43070
      Si        13.57675      -13.57675       -5.43070
      Si        14.93442      -14.93442       -4.07302
      Si        12.21907      -12.21907       -4.07302
      Si        16.29210      -10.86140       -5.43070
      Si        13.57675       -8.14605       -5.43070
      Si        14.93442       -9.50372       -4.07302
      Si        12.21907       -6.78837       -4.07302
      Si        16.29210       -5.43070       -5.43070
      Si        13.57675       -2.71535       -5.43070
      Si        14.93442       -4.07302       -4.07302
      Si        12.21907       -1.35767       -4.07302
      Si         6.78837      -17.64977       -4.07302
      Si        10.86140      -16.29210       -5.43070
      Si         8.14605      -13.57675       -5.43070
      Si         9.50372      -14.93442       -4.07302
      Si         6.78837      -12.21907       -4.07302
      Si        10.86140      -10.86140       -5.43070
      Si         8.14605       -8.14605       -5.43070
      Si         9.50372       -9.50372       -4.07302
      Si         6.78837       -6.78837       -4.07302
      Si        10.86140       -5.43070       -5.43070
      Si         8.14605       -2.71535       -5.43070
      Si         9.50372       -4.07302       -4.07302
      Si         6.78837       -1.35767       -4.07302
      Si         1.35767      -17.64977       -4.07302
      Si         5.43070      -16.29210       -5.43070
      Si         2.71535      -13.57675       -5.43070
      Si         4.07302      -14.93442       -4.07302
      Si         1.35767      -12.21907       -4.07302
      Si         5.43070      -10.86140       -5.43070
      Si         2.71535       -8.14605       -5.43070
      Si         4.07302       -9.50372       -4.07302
      Si         1.35767       -6.78837       -4.07302
      Si         5.43070       -5.43070       -5.43070
      Si         2.71535       -2.71535       -5.43070
      Si         4.07302       -4.07302       -4.07302
      Si         1.35767       -1.35767       -4.07302
      Si        17.64977      -14.93442       -1.35767
      Si        17.64977       -9.50372       -1.35767
      Si        17.64977       -4.07302       -1.35767
      Si        14.93442      -17.64977       -1.35767
      Si        13.57675      -16.29210       -2.71535
      Si        16.29210      -13.57675       -2.71535
      Si        14.93442      -12.21907       -1.35767
      Si        12.21907      -14.93442       -1.35767
      Si        13.57675      -10.86140       -2.71535
      Si        16.29210       -8.14605       -2.71535
      Si        14.93442       -6.78837       -1.35767
      Si        12.21907       -9.50372       -1.35767
      Si        13.57675       -5.43070       -2.71535
      Si        16.29210       -2.71535       -2.71535
      Si        14.93442       -1.35767       -1.35767
      Si        12.21907       -4.07302       -1.35767
      Si         9.50372      -17.64977       -1.35767
      Si         8.14605      -16.29210       -2.71535
      Si        10.86140      -13.57675       -2.71535
      Si         9.50372      -12.21907       -1.35767
      Si         6.78837      -14.93442       -1.35767
      Si         8.14605      -10.86140       -2.71535
      Si        10.86140       -8.14605       -2.71535
      Si         9.50372       -6.78837       -1.35767
      Si         6.78837       -9.50372       -1.35767
      Si         8.14605       -5.43070       -2.71535
      Si        10.86140       -2.71535       -2.71535
      Si         9.50372       -1.35767       -1.35767
      Si         6.78837       -4.07302       -1.35767
      Si         4.07302      -17.64977       -1.35767
      Si         2.71535      -16.29210       -2.71535
      Si         5.43070      -13.57675       -2.71535
      Si         4.07302      -12.21907       -1.35767
      Si         1.35767      -14.93442       -1.35767
      Si         2.71535      -10.86140       -2.71535
      Si         5.43070       -8.14605       -2.71535
      Si         4.07302       -6.78837       -1.35767
      Si         1.35767       -9.50372       -1.35767
      Si         2.71535       -5.43070       -2.71535
      Si         5.43070       -2.71535       -2.71535
      Si         4.07302       -1.35767       -1.35767
      Si         1.35767       -4.07302       -1.35767
    &END COORD
    &KIND Au
      BASIS_SET DZVP-MOLOPT-SR-GTH 
      POTENTIAL GTH-PBE-q11
    &END KIND
    &KIND F
      BASIS_SET TZVP-MOLOPT-GTH 
      POTENTIAL GTH-PBE-q7
    &END KIND
    &KIND O
      BASIS_SET TZVP-MOLOPT-GTH
      POTENTIAL GTH-PBE-q6
    &END KIND
    &KIND C
      BASIS_SET TZVP-MOLOPT-GTH
      POTENTIAL GTH-PBE-q4
    &END KIND
    &KIND Si
      BASIS_SET TZVP-MOLOPT-GTH
      POTENTIAL GTH-PBE-q4
    &END KIND
    &KIND S
      BASIS_SET TZVP-MOLOPT-GTH
      POTENTIAL GTH-PBE-q6
    &END KIND
    &KIND N
      BASIS_SET TZVP-MOLOPT-GTH
      POTENTIAL GTH-PBE-q5
    &END KIND
    &KIND Na
      BASIS_SET DZVP-MOLOPT-SR-GTH
      POTENTIAL GTH-PBE-q9
    &END KIND
   &END SUBSYS
&END FORCE_EVAL
&MOTION
  &CONSTRAINT
    &FIXED_ATOMS
     COMPONENTS_TO_FIX XYZ
     LIST 1..43 
    &END FIXED_ATOMS
  &END CONSTRAINT
  &GEO_OPT
  OPTIMIZER LBFGS
  MAX_ITER 300
  &END GEO_OPT
  &END MOTION
Screen Shot 2020-11-30 at 12.12.28 pm.png

Lucas Lodeiro

unread,
Nov 29, 2020, 10:21:43 PM11/29/20
to cp...@googlegroups.com
Hi DMITRII,

I am not an expert on silicon systems, but I read plenty times that (001) silicon surfaces presents reconstruction when the surface is expanded (the reconstruction is not possible for the unitary surface cell), as your case. This could explain why do you have this problem with silicon and not with Au and Na. The first time that I read about this was "density functional theory: a practical introduction" of Janice Steckel and David Scholl, and in some papers, like this: https://www.researchgate.net/figure/Pictorial-view-of-the-100-surface-of-silicon-a-unrelaxed-surface-b-relaxed_fig5_282648906

Another thing is, Why do you use diagonalization instead of OT method? I expect that silicon system (even surface systems) were not metals... then the OT method will be faster.

Regards 
Lucas Lodeiro

--
You received this message because you are subscribed to the Google Groups "cp2k" group.
To unsubscribe from this group and stop receiving emails from it, send an email to cp2k+uns...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/162639f5-a816-408c-b798-55a572c13fffn%40googlegroups.com.

DMITRII Drugov

unread,
Nov 29, 2020, 10:52:41 PM11/29/20
to cp2k
Thank you for your reply!
I need to compare adsorption energy for organic molecules on different surfaces (Na, Au, Si, and C). I successfully used diagonalization for  Na and Au as they are metals. However,  I am not sure if I use OT for Si and C, it would be accurate to compare Eads with those of Na and Au. What do you think?
Do you have any suggestion how to expand Si surface to allow reconstructing?
Do you think fo graphite I also cannot use unitary cell?

Regards,
Dmitrii

fabia...@gmail.com

unread,
Nov 30, 2020, 4:36:28 AM11/30/20
to cp2k
Dear Dmitrii,

Your cell is not correct, all angles should be 90 degree.

The total energy you reported is positive. This indicates that your structure is far from stable. Where did you get the coordinates from? Did you optimize bulk Si with cp2k before creating the slab?
 
Cheers,
Fabian

oh...@chem.uni-sofia.bg

unread,
Nov 30, 2020, 4:57:02 AM11/30/20
to cp...@googlegroups.com
Dear all, may someone advice me on the following.

I want to get the proper antiferromagnetic coupling of two Cu2+ ions in
a bimetallic complex. For this purpose I use the &BS subsection. Mu
question concerns the MULTIPLICITY keyword in this case. What should be
the  MULTIPLICITY in this case? If I specify only  MULTIPLICITY 1, which
is the actual spin state, cp2k will do non-spinpolarized calculation,
which is not the  case.  That is why I use UKS  T  and MULTIPLICITY 1.
Is that correct setting?

Best regards,

Petko

Krack Matthias (PSI)

unread,
Nov 30, 2020, 5:03:12 AM11/30/20
to cp...@googlegroups.com
Dear Petko

Yes, I think so.

Matthias

-----Ursprüngliche Nachricht-----
Von: cp...@googlegroups.com <cp...@googlegroups.com> Im Auftrag von oh...@chem.uni-sofia.bg
Gesendet: Montag, 30. November 2020 10:57
An: cp...@googlegroups.com
Betreff: [CP2K:14316] Broken Symmetry and MULTIPLICITY
--
You received this message because you are subscribed to the Google Groups "cp2k" group.
To unsubscribe from this group and stop receiving emails from it, send an email to cp2k+uns...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/1ebe18da-1f28-53dc-e4e8-2f70afbf90ee%40chem.uni-sofia.bg.

oh...@chem.uni-sofia.bg

unread,
Nov 30, 2020, 5:05:38 AM11/30/20
to cp...@googlegroups.com, Krack Matthias (PSI)
Dear Matthias, thank you! I  wanted to be sure I do not make mistake.

Petko

DMITRII Drugov

unread,
Nov 30, 2020, 6:57:39 PM11/30/20
to cp2k
Thank you for reply! I created two Si (100) systems with alpha beta gamma 90 90 90 and 90 90 120. The first system did't show any sign of convergence within 10 hours of simulation, whereas other fully converged (with 120 gamma degrees) at DZVP level within 19 hours.  The system with 90 90 120 cell parameters performed about 66 steps  within 19 hours, but the other 90 90 90 system performed only 2 steps for 10 hours. Before doing simulation, I created slab in avogadro and put in CP2K later. I wasn't sure should I choose 90 90 90 or 90 90 120 degree, as I saw smb published a work for Si (100) with 90 90 120 degrees cell parameters.
Here is my and ouput file for system with 90 90 120 cell angels. 

  Total Charge                                                            0.002
 !-----------------------------------------------------------------------------!

 ENERGY| Total FORCE_EVAL ( QS ) energy (a.u.):               -6.901440296115577


 --------  Informations at step =    66 ------------
  Optimization Method        =                LBFGS
  Total Energy               =        -6.9014402961
  Real energy change         =        -0.0000072318
  Decrease in energy         =                  YES
  Used time                  =              883.680

  Convergence check :
  Max. step size             =         0.0025436647
  Conv. limit for step size  =         0.0030000000
  Convergence in step size   =                  YES
  RMS step size              =         0.0006204331
  Conv. limit for RMS step   =         0.0015000000
  Convergence in RMS step    =                  YES
  Max. gradient              =         0.0001874079
  Conv. limit for gradients  =         0.0004500000
  Conv. in gradients         =                  YES
  RMS gradient               =         0.0000472944
  Conv. limit for RMS grad.  =         0.0003000000
  Conv. in RMS gradients     =                  YES
 ---------------------------------------------------

 *******************************************************************************
 ***                    GEOMETRY OPTIMIZATION COMPLETED                      ***
 *******************************************************************************
Reply all
Reply to author
Forward
0 new messages