Consider the following simple AR(1) model;
data {
 int T;
 ...
}
parameters {
 vector eps[T];
 real<lower=0> phi;
 real<lower=0> sigma;
}
model {
 eps[1] ~ normal(0, sigma);
 tail(eps, T-1) ~ normal(phi * head(eps, T-1), sigma); // AR(1) modeling suggested in STAN reference
 ....
}
My question is: phi * head(eps, T-1) is a nonlinear function of two parameters, so even though I am not directly sampling it but shouldn't this need a Jacobian adjustment because eps is not data but a parameter itself.
regards,
vishy