Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains viewable.
Dismiss

FRAUDULENT TESTS OF EINSTEIN'S RELATIVITY

5 views
Skip to first unread message

Pentcho Valev

unread,
Oct 4, 2015, 3:58:11 AM10/4/15
to
http://journals.aps.org/prl/edannounce/10.1103/PhysRevLett.115.130001
Clifford Will in Physical Review Letters: "Einstein and his general theory became celebrities in November 1919, when newspapers worldwide proclaimed "Einstein's theory triumphs." The occasion was the report by British astronomers that they had measured the bending of starlight by the Sun. The researchers had analyzed photographs of stars near the Sun during a total eclipse and found that the tiny displacements of their images, with respect to reference photographs, agreed better with Einstein's theory than with Newton's, which predicted half the effect [3]. Subsequent eclipse measurements tended to confirm Einstein, but some physicists and astronomers remained skeptical [4]. While Einstein's theory successfully accounted for an anomaly in the orbit of Mercury, a third test of the theory, called the gravitational redshift, was initially a bust. Two 1917 observations failed to detect the predicted shift in the Sun's spectral lines. It wasn't until 1960 that the effect was finally measured in a laboratory experiment involving gamma rays [5]."

There are too many lies in this short text (Clifford Will is a gifted liar). The first one - Eddington & Co "found that the tiny displacements of their images, with respect to reference photographs, agreed better with Einstein's theory than with Newton's". The truth:

http://discovermagazine.com/2008/mar/20-things-you-didn.t-know-about-relativity
"The eclipse experiment finally happened in 1919. Eminent British physicist Arthur Eddington declared general relativity a success, catapulting Einstein into fame and onto coffee mugs. In retrospect, it seems that Eddington fudged the results, throwing out photos that showed the wrong outcome. No wonder nobody noticed: At the time of Einstein's death in 1955, scientists still had almost no evidence of general relativity in action."

http://backreaction.blogspot.com/2015/04/a-wonderful-100th-anniversary-gift-for.html
Sabine Hossenfelder: "As light carries energy and is thus subject of gravitational attraction, a ray of light passing by a massive body should be slightly bent towards it. This is so both in Newton's theory of gravity and in Einstein's, but Einstein's deflection is by a factor two larger than Newton's. (...) As history has it, Eddington's original data actually wasn't good enough to make that claim with certainty. His measurements had huge error bars due to bad weather and he also might have cherry-picked his data because he liked Einstein's theory a little too much. Shame on him."

http://www.reformation.edu/scripture-science-stott/aarch/pages/10-soddy-to-nobel-prizewinners.htm
Frederick Soddy: "Incidentally the attempt to verify this during a recent solar eclipse, provided the world with the most disgusting spectacle perhaps ever witnessed of the lengths to which a preconceived notion can bias what was supposed to be an impartial scientific inquiry. For Eddington, who was one of the party, and ought to have been excluded as an ardent supporter of the theory that was under examination, in his description spoke of the feeling of dismay which ran through the expedition when it appeared at one time that Einstein might be wrong! Remembering that in this particular astronomical investigation, the corrections for the normal errors of observation - due to diffraction, temperature changes, and the like - exceeded by many times the magnitude of the predicted deflection of the star's ray being looked for, one wonders exactly what this sort of "science" is really worth."

http://www.newscientist.com/article/mg16321935.300-ode-to-albert.html
New Scientist: Ode to Albert: "Enter another piece of luck for Einstein. We now know that the light-bending effect was actually too small for Eddington to have discerned at that time. Had Eddington not been so receptive to Einstein's theory, he might not have reached such strong conclusions so soon, and the world would have had to wait for more accurate eclipse measurements to confirm general relativity."

http://www.epubsbook.com/books/2203_7.html
Stephen Hawking: "Einsteins prediction of light deflection could not be tested immediately in 1915, because the First World War was in progress, and it was not until 1919 that a British expedition, observing an eclipse from West Africa, showed that light was indeed deflected by the sun, just as predicted by the theory. This proof of a German theory by British scientists was hailed as a great act of reconciliation between the two countries after the war. It is ionic, therefore, that later examination of the photographs taken on that expedition showed the errors were as great as the effect they were trying to measure. Their measurement had been sheer luck, or a case of knowing the result they wanted to get, not an uncommon occurrence in science."

http://irfu.cea.fr/Phocea/file.php?file=Ast/2774/RELATIVITE-052-456.pdf
Jean-Marc Bonnet-Bidaud: "L'expédition britannique envoie deux équipes indépendantes sur le trajet de l'éclipse : l'une dirigée par Andrew Crommelin dans la ville de Sobral, dans le nord du Brésil, l'autre conduite par Eddington lui-même sur l'île de Principe, en face de Libreville, au Gabon. Le matériel embarqué est des plus sommaires au regard des moyens actuels : une lunette astronomique de seulement 20 cm de diamètre en chaque lieu, avec un instrument de secours de 10 cm à Sobral. Pour éviter l'emploi d'une monture mécanique trop lourde à transporter, la lumière est dirigée vers les lunettes par de simples miroirs mobiles, ce qui se révélera être une bien mauvaise idée. La stratégie est assez complexe. Il s'agit d'exposer des plaques photographiques durant l'éclipse pour enregistrer la position d'un maximum d'étoiles autour du Soleil, puis de comparer avec des plaques témoins de la même région du ciel obtenues de nuit, quelques mois plus tard. La différence des positions entre les deux séries de plaques, avec et sans le Soleil, serait la preuve de l'effet de la relativité et le résultat est bien sûr connu à l'avance. Problème non négligeable : la différence attendue est minuscule. Au maximum, au bord même du Soleil, l'écart prévu est seulement de un demi dix-millième de degré, soit très précisément 1,75 seconde d'arc (1,75"), correspondant à l'écart entre les deux bords d'une pièce de monnaie observée à 3 km de distance ! Or, quantités d'effets parasites peuvent contaminer les mesures, la qualité de l'émulsion photographique, les variations dans l'atmosphère terrestre, la dilatation des miroirs... Le jour J, l'équipe brésilienne voit le ciel se dégager au dernier moment mais Eddington n'aperçoit l'éclipse qu'à travers les nuages ! Sa quête est très maigre, tout juste deux plaques sur lesquelles on distingue à peine cinq étoiles. Pressé de rentrer en Angleterre, Eddington ne prend même pas la précaution d'attendre les plaques témoins. Les choses vont beaucoup mieux à Sobral : 19 plaques avec plus d'une dizaine d'étoiles et huit plaques prises avec la lunette de secours. L'équipe reste sur place deux mois pour réaliser les fameuses plaques témoins et, le 25 août, tout le monde est en Angleterre. Eddington se lance dans des calculs qu'il est le seul à contrôler, décidant de corriger ses propres mesures avec des plaques obtenues avec un autre instrument, dans une autre région du ciel, autour d'Arcturus. Il conclut finalement à une déviation comprise entre 1,31" et 1,91" : le triomphe d'Einstein est assuré ! Très peu sûr de sa méthode, Eddington attend anxieusement les résultats de l'autre expédition qui arrivent en octobre, comme une douche froide : suivant une méthode d'analyse rigoureuse, l'instrument principal de Sobral a mesuré une déviation de seulement 0,93". La catastrophe est en vue. S'ensuivent de longues tractations entre Eddington et Dyson, directeurs respectifs des observatoires de Cambridge et de Greenwich. On repêche alors les données de la lunette de secours de Sobral, qui a le bon goût de produire comme résultat un confortable 1,98", et le tour de passe-passe est joué. Dans la publication historique de la Royal Society, on lit comme justification une simple note : "Il reste les plaques astrographiques de Sobral qui donnent une déviation de 0,93", discordantes par une quantité au-delà des limites des erreurs accidentelles. Pour les raisons déjà longuement exposées, peu de poids est accordé à cette détermination." Plus loin, apparaît la conclusion catégorique: "Les résultats de Sobral et Principe laissent peu de doute qu'une déviation de la lumière existe au voisinage du Soleil et qu'elle est d'une amplitude exigée par la théorie de la relativité généralisée d'Einstein." Les données gênantes ont donc tout simplement été escamotées."

Pentcho Valev

Pentcho Valev

unread,
Oct 5, 2015, 2:17:37 AM10/5/15
to
http://journals.aps.org/prl/edannounce/10.1103/PhysRevLett.115.130001
Clifford Will in Physical Review Letters: "...a third test of the theory, called the gravitational redshift, was initially a bust. Two 1917 observations failed to detect the predicted shift in the Sun's spectral lines. It wasn't until 1960 that the effect was finally measured in a laboratory experiment involving gamma rays [5]."

Between the 1917 "bust" and the 1960 measurement there was the 1925 horrific fraud (as will be shown later, the interpretation of the 1960 laboratory experiment was a fraud as well):

http://preterism.ning.com/forum/topics/can-we-trust-the-data
"Consider the case of astronomer Walter Adams. In 1925 he tested Einstein's theory of relativity by measuring the red shift of the binary companion of Sirius, brightest star in the sky. Einstein's theory predicted a red shift of six parts in a hundred thousand; Adams found just such an effect. A triumph for relativity. However, in 1971, with updated estimates of the mass and radius of Sirius, it was found that the predicted red shift should have been much larger - 28 parts in a hundred thousand. Later observations of the red shift did indeed measure this amount, showing that Adams' observations were flawed. He "saw" what he had expected to see."

http://adsabs.harvard.edu/abs/2010AAS...21530404H
"In January 1924 Arthur Eddington wrote to Walter S. Adams at the Mt. Wilson Observatory suggesting a measurement of the "Einstein shift" in Sirius B and providing an estimate of its magnitude. Adams' 1925 published results agreed remarkably well with Eddington's estimate. Initially this achievement was hailed as the third empirical test of General Relativity (after Mercury's anomalous perihelion advance and the 1919 measurement of the deflection of starlight). It has been known for some time that both Eddington's estimate and Adams' measurement underestimated the true Sirius B gravitational redshift by a factor of four."

http://adsabs.harvard.edu/full/1980QJRAS..21..246H
"...Eddington asked Adams to attempt the measurement. (...) ...Adams reported an average differential redshift of nineteen kilometers per second, very nearly the predicted gravitational redshift. Eddington was delighted with the result... (...) In 1928 Joseph Moore at the Lick Observatory measured differences between the redshifts of Sirius and Sirius B... (...) ...the average was nineteen kilometers per second, precisely what Adams had reported. (...) More seriously damaging to the reputation of Adams and Moore is the measurement in the 1960s at Mount Wilson by Jesse Greenstein, J.Oke, and H.Shipman. They found a differential redshift for Sirius B of roughly eighty kilometers per second."

http://irfu.cea.fr/Phocea/file.php?file=Ast/2774/RELATIVITE-052-456.pdf
Jean-Marc Bonnet-Bidaud: "Autour de l'étoile brillante Sirius, on découvre une petite étoile, Sirius B, à la fois très chaude et très faiblement lumineuse. Pour expliquer ces deux particularités, il faut supposer que l'étoile est aussi massive que le Soleil et aussi petite qu'une planète comme la Terre. C'est Eddington lui-même qui aboutit à cette conclusion dont il voit vite l'intérêt : avec de telles caractéristiques, ces naines blanches sont extrêmement denses et leur gravité très puissante. Le décalage vers le rouge de la gravitation est donc 100 fois plus élevé que sur le Soleil. Une occasion inespérée pour mesurer enfin quelque chose d'appréciable. Eddington s'adresse aussitôt à Walter Adams, directeur de l'observatoire du mont Wilson, en Californie, afin que le télescope de 2,5 m de diamètre Hooker entreprenne les vérifications. Selon ses estimations, basées sur une température de 8 000 degrés de Sirius B, mesurée par Adams lui-même, le décalage vers le rouge prédit par la relativité, en s'élevant à 20 km/s, devrait être facilement mesurable. Adams mobilise d'urgence le grand télescope et expose 28 plaques photographiques pour réaliser la mesure. Son rapport, publié le 18 mai 1925, est très confus car il mesure des vitesses allant de 2 à 33 km/s. Mais, par le jeu de corrections arbitraires dont personne ne comprendra jamais la logique, le décalage passe finalement à 21 km/s, plus tard corrigé à 19 km/s, et Eddington de conclure : "Les résultats peuvent être considérés comme fournissant une preuve directe de la validité du troisième test de la théorie de la relativité générale." Adams et Eddington se congratulent, ils viennent encore de "prouver" Einstein. Ce résultat, pourtant faux, ne sera pas remis en cause avant 1971. Manque de chance effectivement, la première mesure de température de Sirius B était largement inexacte : au lieu des 8 000 degrés envisagés par Eddington, l'étoile fait en réalité près de 30 000 degrés. Elle est donc beaucoup plus petite, sa gravité est plus intense et le décalage vers le rouge mesurable est de 89 km/s. C'est ce qu'aurait dû trouver Adams sur ses plaques s'il n'avait pas été "influencé" par le calcul erroné d'Eddington. L'écart est tellement flagrant que la suspicion de fraude a bien été envisagée."

Pentcho Valev

Pentcho Valev

unread,
Oct 5, 2015, 7:28:05 PM10/5/15
to
http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html#GPS
Tom Roberts: "While not really an experiment, and not really any sort of test of SR, the GPS is an interesting and useful system in which relativity plays an important part."

Typical effrontery in Einstein's schizophrenic world. Divine Albert's Divine Theory is gloriously confirmed by something that is "not really an experiment, and not really any sort of test of SR". Critics are paralyzed - idiocy of this kind is impossible to fight.

Pentcho Valev
0 new messages