Any help appreciated
Mike
82 lines is the least amount of lines that allows you to get your
purposes:
49,6,2,2=82
1 2 3 4 5 6
1 2 3 7 8 9
1 10 11 12 13 14
1 15 16 17 18 19
1 20 21 22 23 24
1 25 26 27 28 29
1 30 31 32 33 34
1 35 36 37 38 39
1 40 41 42 43 44
1 45 46 47 48 49
2 10 25 30 35 45
2 11 15 31 36 46
2 12 20 32 37 47
2 13 33 38 40 48
2 14 16 21 26 41
2 17 22 27 42 49
2 18 23 28 34 43
2 19 24 29 39 44
3 10 16 24 34 46
3 11 19 21 40 45
3 12 18 22 39 48
3 13 17 23 25 47
3 14 27 32 38 43
3 15 28 33 37 42
3 20 26 31 35 44
3 29 30 36 41 49
4 5 6 7 8 11
4 9 17 26 34 37
4 10 18 20 29 38
4 12 16 27 36 40
4 13 19 28 35 49
4 14 23 33 44 45
4 15 24 30 43 48
4 21 31 39 42 47
4 22 25 32 41 46
5 9 23 27 30 39
5 10 22 28 31 40
5 12 24 26 33 49
5 13 15 21 29 32
5 14 18 35 42 46
5 16 25 37 44 48
5 17 20 36 43 45
5 19 34 38 41 47
6 9 18 32 44 49
6 10 17 33 39 41
6 12 19 25 31 43
6 13 16 20 30 42
6 14 24 28 36 47
6 15 22 26 38 45
6 21 27 34 35 48
6 23 29 37 40 46
7 9 20 28 41 48
7 10 15 27 44 47
7 12 29 34 42 45
7 13 26 39 43 46
7 14 19 22 30 37
7 16 23 31 38 49
7 17 24 32 35 40
7 18 21 25 33 36
8 10 21 37 43 49
8 11 24 25 38 42
8 12 15 23 35 41
8 13 22 34 36 44
8 14 17 29 31 48
8 16 28 32 39 45
8 18 26 30 40 47
8 19 20 27 33 46
9 10 19 36 42 48
9 11 16 22 35 43
9 11 16 29 33 47
9 12 21 28 38 46
9 13 24 31 41 45
9 14 15 20 25 40
10 19 23 26 32 36
11 17 28 30 38 44
11 18 24 27 37 41
11 20 25 34 39 49
11 23 26 32 42 48
12 17 21 30 44 46
13 18 27 31 37 45
14 15 34 39 40 49
22 29 33 35 43 47
> As each set of 6 numbers comprises 15 pairs I should be able to do this in a
> theoretical 78.4 sets .
> Being only a theoretical value I multiplied it by 4 and set up a program to
> generate 300 sets at a time.
> My problem is that , even after +/- 30k cycles, the best cover I can achieve
> is +/- 1000 of the 1176 pairs i.e. even after generating 300*15 = 4500 pairs
> each cycle.
> I'm no statistician and would like to know if it is possible to calculate
> the likely number of cycles needed before the magical 1176 is arrived at.
>
> Any help appreciated
>
> Mike
Look at this wheel as pointer numbers, order randomly the 49 numbers
and then substitute the pointer by the order your program gets. This
way you can have a lot of different blocks of 82 lines, every block
having the 1176 pairs inside.
Frank
This wheel has been constructed (and its minimality proven) by
Bluskov-Greig-Heinrich in an article published in Can Math Bulletin
43(2000).
More Bluskov's minimal wheels can be found in his book
Combinatorial lottery systems; see
http://www3.telus.net/lotbook/