On Sun, 5 Jan 2020 16:52:07 -0800 (PST), Norman Megill <
n...@alum.mit.edu> wrote:
> OK. you (or David or whoever wants) can add the "t".
Okay. I did a quick look to see how many labels would probably change, by running this:
metamath 'read
set.mm' 'set scroll continuous' 'set width 9999' 'show statement *sqr*' quit | grep ' sqr ' > ,sqr
It looks like it's less than 100. I think we can first change all the labels (e.g., "df-sqr" becomes "df-sqrt"), as listed below. We can then separately change the actual expressions so "sqr" becomes "sqrt". Doing this in separate steps should reduce the risk of errors in it.
--- David A. Wheeler
=========================================
40921 csqr $a class sqr $.
40925 df-sqr $a |- sqr = ( x e. CC |-> ( iota_ y e. CC ( ( y ^ 2 ) = x /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) $.
40927 sqrval $p |- ( A e. CC -> ( sqr ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) $= ... $.
40933 sqr0 $p |- ( sqr ` 0 ) = 0 $= ... $.
40967 resqrcl $p |- ( ( A e. RR /\ 0 <_ A ) -> ( sqr ` A ) e. RR ) $= ... $.
40968 resqrthlem $p |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( sqr ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqr ` A ) ) /\ ( _i x. ( sqr ` A ) ) e/ RR+ ) ) $= ... $.
40970 resqrth $p |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqr ` A ) ^ 2 ) = A ) $= ... $.
40971 remsqsqr $p |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqr ` A ) x. ( sqr ` A ) ) = A ) $= ... $.
40972 sqrge0 $p |- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ ( sqr ` A ) ) $= ... $.
40973 sqrgt0 $p |- ( ( A e. RR /\ 0 < A ) -> 0 < ( sqr ` A ) ) $= ... $.
40974 sqrmul $p |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( sqr ` ( A x. B ) ) = ( ( sqr ` A ) x. ( sqr ` B ) ) ) $= ... $.
40975 sqrle $p |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A <_ B <-> ( sqr ` A ) <_ ( sqr ` B ) ) ) $= ... $.
40976 sqrlt $p |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( sqr ` A ) < ( sqr ` B ) ) ) $= ... $.
40977 sqr11 $p |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqr ` A ) = ( sqr ` B ) <-> A = B ) ) $= ... $.
40978 sqr00 $p |- ( ( A e. RR /\ 0 <_ A ) -> ( ( sqr ` A ) = 0 <-> A = 0 ) ) $= ... $.
40979 rpsqrcl $p |- ( A e. RR+ -> ( sqr ` A ) e. RR+ ) $= ... $.
40980 sqrdiv $p |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ ) -> ( sqr ` ( A / B ) ) = ( ( sqr ` A ) / ( sqr ` B ) ) ) $= ... $.
40981 sqrneglem $p |- ( ( A e. RR /\ 0 <_ A ) -> ( ( ( _i x. ( sqr ` A ) ) ^ 2 ) = -u A /\ 0 <_ ( Re ` ( _i x. ( sqr ` A ) ) ) /\ ( _i x. ( _i x. ( sqr ` A ) ) ) e/ RR+ ) ) $= ... $.
40984 sqrneg $p |- ( ( A e. RR /\ 0 <_ A ) -> ( sqr ` -u A ) = ( _i x. ( sqr ` A ) ) ) $= ... $.
40986 sqrsq2 $p |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( sqr ` A ) = B <-> A = ( B ^ 2 ) ) ) $= ... $.
40987 sqrsq $p |- ( ( A e. RR /\ 0 <_ A ) -> ( sqr ` ( A ^ 2 ) ) = A ) $= ... $.
40988 sqrmsq $p |- ( ( A e. RR /\ 0 <_ A ) -> ( sqr ` ( A x. A ) ) = A ) $= ... $.
40989 sqr1 $p |- ( sqr ` 1 ) = 1 $= ... $.
40990 sqr4 $p |- ( sqr ` 4 ) = 2 $= ... $.
40991 sqr9 $p |- ( sqr ` 9 ) = 3 $= ... $.
40992 sqr2gt1lt2 $p |- ( 1 < ( sqr ` 2 ) /\ ( sqr ` 2 ) < 2 ) $= ... $.
40993 sqrm1 $p |- _i = ( sqr ` -u 1 ) $= ... $.
41151 sqreulem.1 $e |- B = ( ( sqr ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) $.
41160 sqrcl $p |- ( A e. CC -> ( sqr ` A ) e. CC ) $= ... $.
41161 sqrthlem $p |- ( A e. CC -> ( ( ( sqr ` A ) ^ 2 ) = A /\ 0 <_ ( Re ` ( sqr ` A ) ) /\ ( _i x. ( sqr ` A ) ) e/ RR+ ) ) $= ... $.
41162 sqrf $p |- sqr : CC --> CC $= ... $.
41164 sqrth $p |- ( A e. CC -> ( ( sqr ` A ) ^ 2 ) = A ) $= ... $.
41165 sqrrege0 $p |- ( A e. CC -> 0 <_ ( Re ` ( sqr ` A ) ) ) $= ... $.
41166 eqsqror $p |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) = B <-> ( A = ( sqr ` B ) \/ A = -u ( sqr ` B ) ) ) ) $= ... $.
41176 eqsqrd $p |- ( ph -> A = ( sqr ` B ) ) $= ... $.
41179 eqsqr2d $p |- ( ph -> A = ( sqr ` B ) ) $= ... $.
41184 sqrthi $p |- ( 0 <_ A -> ( ( sqr ` A ) x. ( sqr ` A ) ) = A ) $= ... $.
41185 sqrcli $p |- ( 0 <_ A -> ( sqr ` A ) e. RR ) $= ... $.
41186 sqrgt0i $p |- ( 0 < A -> 0 < ( sqr ` A ) ) $= ... $.
41187 sqrmsqi $p |- ( 0 <_ A -> ( sqr ` ( A x. A ) ) = A ) $= ... $.
41188 sqrsqi $p |- ( 0 <_ A -> ( sqr ` ( A ^ 2 ) ) = A ) $= ... $.
41189 sqsqri $p |- ( 0 <_ A -> ( ( sqr ` A ) ^ 2 ) = A ) $= ... $.
41190 sqrge0i $p |- ( 0 <_ A -> 0 <_ ( sqr ` A ) ) $= ... $.
41198 sqrpclii $p |- ( sqr ` A ) e. RR $= ... $.
41199 sqrgt0ii $p |- 0 < ( sqr ` A ) $= ... $.
41202 sqr11i $p |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqr ` A ) = ( sqr ` B ) <-> A = B ) ) $= ... $.
41203 sqrmuli $p |- ( ( 0 <_ A /\ 0 <_ B ) -> ( sqr ` ( A x. B ) ) = ( ( sqr ` A ) x. ( sqr ` B ) ) ) $= ... $.
41207 sqrmulii $p |- ( sqr ` ( A x. B ) ) = ( ( sqr ` A ) x. ( sqr ` B ) ) $= ... $.
41209 sqrmsq2i $p |- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( sqr ` A ) = B <-> A = ( B x. B ) ) ) $= ... $.
41210 sqrlei $p |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A <_ B <-> ( sqr ` A ) <_ ( sqr ` B ) ) ) $= ... $.
41211 sqrlti $p |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A < B <-> ( sqr ` A ) < ( sqr ` B ) ) ) $= ... $.
41241 rpsqrcld $p |- ( ph -> ( sqr ` A ) e. RR+ ) $= ... $.
41242 sqrgt0d $p |- ( ph -> 0 < ( sqr ` A ) ) $= ... $.
41254 resqrcld $p |- ( ph -> ( sqr ` A ) e. RR ) $= ... $.
41255 sqrmsqd $p |- ( ph -> ( sqr ` ( A x. A ) ) = A ) $= ... $.
41256 sqrsqd $p |- ( ph -> ( sqr ` ( A ^ 2 ) ) = A ) $= ... $.
41257 sqrge0d $p |- ( ph -> 0 <_ ( sqr ` A ) ) $= ... $.
41258 sqrnegd $p |- ( ph -> ( sqr ` -u A ) = ( _i x. ( sqr ` A ) ) ) $= ... $.
41262 sqrdivd $p |- ( ph -> ( sqr ` ( A / B ) ) = ( ( sqr ` A ) / ( sqr ` B ) ) ) $= ... $.
41266 sqrmuld $p |- ( ph -> ( sqr ` ( A x. B ) ) = ( ( sqr ` A ) x. ( sqr ` B ) ) ) $= ... $.
41267 sqrsq2d $p |- ( ph -> ( ( sqr ` A ) = B <-> A = ( B ^ 2 ) ) ) $= ... $.
41268 sqrled $p |- ( ph -> ( A <_ B <-> ( sqr ` A ) <_ ( sqr ` B ) ) ) $= ... $.
41269 sqrltd $p |- ( ph -> ( A < B <-> ( sqr ` A ) < ( sqr ` B ) ) ) $= ... $.
41270 sqr11d.5 $e |- ( ph -> ( sqr ` A ) = ( sqr ` B ) ) $.
41290 sqrcld $p |- ( ph -> ( sqr ` A ) e. CC ) $= ... $.
41291 sqrrege0d $p |- ( ph -> 0 <_ ( Re ` ( sqr ` A ) ) ) $= ... $.
41292 sqsqrd $p |- ( ph -> ( ( sqr ` A ) ^ 2 ) = A ) $= ... $.
41293 msqsqrd $p |- ( ph -> ( ( sqr ` A ) x. ( sqr ` A ) ) = A ) $= ... $.
41295 sqr00d.2 $e |- ( ph -> ( sqr ` A ) = 0 ) $.
44497 sqr2irrlem.3 $e |- ( ph -> ( sqr ` 2 ) = ( A / B ) ) $.
44502 sqr2irr $p |- ( sqr ` 2 ) e/ QQ $= ... $.
44504 sqr2re $p |- ( sqr ` 2 ) e. RR $= ... $.
45491 zsqrelqelz $p |- ( ( A e. ZZ /\ ( sqr ` A ) e. QQ ) -> ( sqr ` A ) e. ZZ ) $= ... $.
84684 cphsqrcl $p |- ( ( W e. CPreHil /\ ( A e. K /\ A e. RR /\ 0 <_ A ) ) -> ( sqr ` A ) e. K ) $= ... $.
84686 cphsqrcl2 $p |- ( ( W e. CPreHil /\ A e. K /\ -. -u A e. RR+ ) -> ( sqr ` A ) e. K ) $= ... $.
84687 cphsqrcl3 $p |- ( ( W e. CPreHil /\ _i e. K /\ A e. K ) -> ( sqr ` A ) e. K ) $= ... $.
91919 cxpsqrlem $p |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( A ^c ( 1 / 2 ) ) = -u ( sqr ` A ) ) -> ( _i x. ( sqr ` A ) ) e. RR ) $= ... $.
91920 cxpsqr $p |- ( A e. CC -> ( A ^c ( 1 / 2 ) ) = ( sqr ` A ) ) $= ... $.
91921 logsqr $p |- ( A e. RR+ -> ( log ` ( sqr ` A ) ) = ( ( log ` A ) / 2 ) ) $= ... $.
92016 dvsqr $p |- ( RR _D ( x e. RR+ |-> ( sqr ` x ) ) ) = ( x e. RR+ |-> ( 1 / ( 2 x. ( sqr ` x ) ) ) ) $= ... $.
92054 resqrcn $p |- ( sqr |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) $= ... $.
92056 sqrcn $p |- ( sqr |` D ) e. ( D -cn-> CC ) $= ... $.
92100 loglesqr $p |- ( ( A e. RR /\ 0 <_ A ) -> ( log ` ( A + 1 ) ) <_ ( sqr ` A ) ) $= ... $.
92831 sqrlim $p |- ( n e. RR+ |-> ( 1 / ( sqr ` n ) ) ) ~~>r 0 $= ... $.
92869 divsqrsum.2 $e |- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqr ` n ) ) - ( 2 x. ( sqr ` x ) ) ) ) $.
92870 divsqrsumlem $p |- ( F : RR+ --> RR /\ F e. dom ~~>r /\ ( ( F ~~>r L /\ A e. RR+ ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( 1 / ( sqr ` A ) ) ) ) $= ... $.
92869 divsqrsum.2 $e |- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqr ` n ) ) - ( 2 x. ( sqr ` x ) ) ) ) $.
92869 divsqrsum.2 $e |- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqr ` n ) ) - ( 2 x. ( sqr ` x ) ) ) ) $.
92869 divsqrsum.2 $e |- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqr ` n ) ) - ( 2 x. ( sqr ` x ) ) ) ) $.
92874 divsqrsum2 $p |- ( ( ph /\ A e. RR+ ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( 1 / ( sqr ` A ) ) ) $= ... $.
92869 divsqrsum.2 $e |- F = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / ( sqr ` n ) ) - ( 2 x. ( sqr ` x ) ) ) ) $.
92875 divsqrsumo1 $p |- ( ph -> ( y e. RR+ |-> ( ( ( F ` y ) - L ) x. ( sqr ` y ) ) ) e. O(1) ) $= ... $.
120881 dvcnsqr $p |- ( CC _D ( x e. D |-> ( sqr ` x ) ) ) = ( x e. D |-> ( 1 / ( 2 x. ( sqr ` x ) ) ) ) $= ... $.
124714 rmspecsqrnq $p |- ( A e. ( ZZ>= ` 2 ) -> ( sqr ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) $= ... $.