I am a beginner in lavaan and blavaan library. I have some basic questions in my code.
library(lavaan)
x<-read.csv("C:/Users/Quanying LU/Desktop/5.csv")
co2model<-'"
> library(lavaan)
> x<-read.csv("C:/Users/Quanying LU/Desktop/5.csv")
> co2model<-'
+ # measurement model
+ co2=~y1
+ total=~y2+y3+y4+y5+y6
+ struct=~y7+y8+y9+y10
+ tech=~y11
+ # regressions
+ co2~total+struct+tech
+ total~struct+tech
+ struct~tech
+ # residual covariances
+ y2~~y3+y4+y5+y6+y7+y8+y9+y10+y11
+ y3 ~~ y4+y7
+ y5 ~~ y4+y7+y8+y9+y11
+ y6 ~~ y4+y7+y8+y9+y11
+ y7~~y4
+ y8~~y11
+ y9~~y11
+ y10~~y11'
> fit <- sem(co2model, data = x,meanstructure = "default",
+ conditional.x = "default", fixed.x = "default",
+ orthogonal = FALSE, std.lv = FALSE,
+ parameterization = "default", std.ov = FALSE,
+ missing = "default", ordered = NULL,
+ sample.cov = NULL, sample.cov.rescale = "default",
+ sample.mean = NULL, sample.nobs = NULL,
+ ridge = 1e-05, group = NULL,
+ group.label = NULL, group.equal = "", group.partial = "",
+ group.w.free = FALSE, cluster = NULL, constraints = '',
+ estimator = "default", likelihood = "default", link = "default",
+ information = "default", se = "default", test = "default",
+ bootstrap = 1000L, mimic = "default", representation = "default",
+ do.fit = TRUE, control = list(), WLS.V = NULL, NACOV = NULL,
+ zero.add = "default", zero.keep.margins = "default",zero.cell.warn = TRUE,
+ start = "default", verbose = FALSE, warn = TRUE, debug = FALSE)
Warning messages:
1: In lav_object_post_check(lavobject) :
lavaan WARNING: some estimated variances are negative
2: In lav_object_post_check(lavobject) :
lavaan WARNING: covariance matrix of latent variables is not positive definite; use inspect(fit,"cov.lv") to investigate.
3: In lav_object_post_check(lavobject) :
lavaan WARNING: observed variable error term matrix (theta) is not positive definite; use inspect(fit,"theta") to investigate.
> summary(fit, standardized = TRUE)
lavaan (0.5-20) converged normally after 619 iterations
Number of observations 27
Estimator ML
Minimum Function Test Statistic 86.803
Degrees of freedom 15
P-value (Chi-square) 0.000
Parameter Estimates:
Information Expected
Standard Errors Standard
Latent Variables:
Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
co2 =~
y1 1.000 0.863 1.000
total =~
y2 1.000 0.736 0.969
y3 0.094 0.003 28.857 0.000 0.069 0.974
y4 1.539 0.048 32.027 0.000 1.132 0.966
y5 1.043 0.088 11.861 0.000 0.767 0.905
y6 0.652 0.040 16.395 0.000 0.480 0.955
struct =~
y7 1.000 0.243 0.999
y8 0.196 0.054 3.647 0.000 0.048 0.544
y9 2.795 0.076 36.652 0.000 0.679 0.991
y10 -1.052 0.065 -16.125 0.000 -0.256 -0.952
tech =~
y11 1.000 0.307 1.000
Regressions:
Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
co2 ~
total 0.864 0.190 4.547 0.000 0.737 0.737
struct 0.910 0.817 1.113 0.266 0.256 0.256
tech 0.032 0.309 0.104 0.917 0.011 0.011
total ~
struct 3.043 0.452 6.731 0.000 1.005 1.005
tech -0.043 0.347 -0.125 0.900 -0.018 -0.018
struct ~
tech -0.766 0.037 -20.437 0.000 -0.969 -0.969
Covariances:
Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
y2 ~~
y3 0.002 0.001 3.731 0.000 0.002 0.728
y4 0.046 0.010 4.625 0.000 0.046 0.808
y5 0.024 0.006 4.076 0.000 0.024 0.353
y6 0.010 0.002 4.249 0.000 0.010 0.347
y7 -0.005 0.001 -4.376 0.000 -0.005 -2.480
y8 -0.001 0.001 -1.003 0.316 -0.001 -0.051
y9 -0.006 0.002 -3.769 0.000 -0.006 -0.349
y10 -0.007 0.001 -4.367 0.000 -0.007 -0.420
y11 0.003 0.001 2.483 0.013 0.003 Inf
y3 ~~
y4 0.004 0.001 3.971 0.000 0.004 0.849
y7 -0.001 0.000 -4.915 0.000 -0.001 -3.000
y4 ~~
y5 0.034 0.010 3.439 0.001 0.034 0.313
y5 ~~
y7 -0.004 0.002 -2.030 0.042 -0.004 -0.870
y8 0.011 0.003 3.242 0.001 0.011 0.425
y9 -0.017 0.005 -3.619 0.000 -0.017 -0.501
y11 0.002 0.004 0.499 0.618 0.002 Inf
y4 ~~
y6 0.012 0.003 3.477 0.001 0.012 0.261
y6 ~~
y7 -0.003 0.001 -3.632 0.000 -0.003 -2.001
y8 -0.008 0.002 -3.785 0.000 -0.008 -0.744
y9 -0.009 0.002 -3.502 0.000 -0.009 -0.634
y11 0.011 0.003 3.896 0.000 0.011 Inf
y4 ~~
y7 -0.008 0.002 -4.256 0.000 -0.008 -2.301
y8 ~~
y11 -0.003 0.001 -2.990 0.003 -0.003 -Inf
y9 ~~
y11 -0.003 0.001 -2.609 0.009 -0.003 -Inf
y10 ~~
y11 0.001 0.001 0.855 0.393 0.001 Inf
Variances:
Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
y1 0.000 0.000 0.000
y2 0.036 0.008 4.713 0.000 0.036 0.062
y3 0.000 0.000 3.938 0.000 0.000 0.052
y4 0.093 0.018 5.049 0.000 0.093 0.067
y5 0.130 0.032 4.071 0.000 0.130 0.181
y6 0.022 0.006 3.705 0.000 0.022 0.087
y7 0.000 0.000 1.263 0.206 0.000 0.002
y8 0.005 0.001 4.198 0.000 0.005 0.704
y9 0.008 0.002 4.790 0.000 0.008 0.018
y10 0.007 0.001 4.791 0.000 0.007 0.094
y11 0.000 0.000 0.000
co2 0.021 0.006 3.381 0.001 0.028 0.028
total -0.025 0.007 -3.391 0.001 -0.045 -0.045
struct 0.004 0.001 3.943 0.000 0.061 0.061
tech 0.094 0.026 3.685 0.000 1.000 1.000
library(blavaan)
library(rjags)
library(runjags)
x<-read.csv("C:/Users/Quanying LU/Desktop/5.csv")
co2.model<-'
# measurement model
co2=~y1
total=~y2+y3+y4+y5+y6
struct=~y7+y8+y9+y10
tech=~y11
# regressions
co2~total+struct+tech
total~struct+tech
struct~tech
# residual covariances
y2~~y3+y4+y5+y6+y7+y8+y9+y10+y11
y3 ~~ y4+y7
y5 ~~ y7+y8+y9
y6 ~~ y7+y8+y9+y11
y7~~y8
y8~~y11
y10~~y11'
fit <- bsem(co2.model, data=x,
dp=dpriors(nu="dnorm(5,1e-3)", itheta="dlnorm(1,.1)[sd]",
ipsi="dlnorm(1,.1)[sd]", rho="dbeta(3,3)"),
jagcontrol=list(method="rjparallel"))
summary(fit)
Failed with error: ‘there is no package called ‘modeest’’
Compiling rjags model...
Error : The following error occured when compiling and adapting the model using rjags:
Error in rjags::jags.model(model, data = dataenv, inits = inits, n.chains = length(runjags.object$end.state), :
Error in node theta[1,1]
Invalid parent values
It may help to use failed.jags(c('model','data','inits')) to see model/data/inits syntax with line numbers
Error in blavaan(co2.model, data = x, dp = dpriors(nu = "dnorm(5,1e-3)", :
blavaan ERROR: problem with jags estimation. The jags model and data have been exported.