/Applications/anaconda/lib/python2.7/site-packages/hddm/models/hddm_info.pyc in __init__(self, *args, **kwargs)
111 self.is_informative = kwargs.pop('informative', True)
112
--> 113 super(HDDM, self).__init__(*args, **kwargs)
114
115 def _create_stochastic_knodes(self, include):
/Applications/anaconda/lib/python2.7/site-packages/hddm/models/base.pyc in __init__(self, data, bias, include, wiener_params, p_outlier, **kwargs)
687 self.wfpt_class = hddm.likelihoods.generate_wfpt_stochastic_class(wp, cdf_range=self.cdf_range)
688
--> 689 super(HDDMBase, self).__init__(data, **kwargs)
690
691 def __getstate__(self):
/Applications/anaconda/lib/python2.7/site-packages/hddm/models/base.pyc in __init__(self, data, **kwargs)
38 self.std_depends = kwargs.pop('std_depends', False)
39
---> 40 super(AccumulatorModel, self).__init__(data, **kwargs)
41
42
/Applications/anaconda/lib/python2.7/site-packages/kabuki/hierarchical.pyc in __init__(self, data, is_group_model, depends_on, trace_subjs, plot_subjs, plot_var, group_only_nodes)
345 self.db = None
346
--> 347 self._setup_model()
348
349 def _setup_model(self):
/Applications/anaconda/lib/python2.7/site-packages/kabuki/hierarchical.pyc in _setup_model(self)
356
357 # constructs pymc nodes etc and connects them appropriately
--> 358 self.create_model()
359
360 def __getstate__(self):
/Applications/anaconda/lib/python2.7/site-packages/kabuki/hierarchical.pyc in create_model(self, max_retries)
426 for tries in range(max_retries):
427 try:
--> 428 _create()
429 except (pm.ZeroProbability, ValueError):
430 continue
/Applications/anaconda/lib/python2.7/site-packages/kabuki/hierarchical.pyc in _create()
422 def _create():
423 for knode in self.knodes:
--> 424 knode.create()
425
426 for tries in range(max_retries):
/Applications/anaconda/lib/python2.7/site-packages/kabuki/hierarchical.pyc in create(self)
165 kwargs['doc'] = node_name
166
--> 167 node = self.create_node(node_name, kwargs, grouped_data)
168
169 if node is not None:
/Applications/anaconda/lib/python2.7/site-packages/kabuki/hierarchical.pyc in create_node(self, node_name, kwargs, data)
173 def create_node(self, node_name, kwargs, data):
174 #actually create the node
--> 175 return self.pymc_node(name=node_name, **kwargs)
176
177 def create_tag_and_subj_idx(self, cols, uniq_elem):
/Applications/anaconda/lib/python2.7/site-packages/pymc/distributions.pyc in __init__(self, *args, **kwds)
269 random = debug_wrapper(random)
270 else:
--> 271 Stochastic.__init__(self, logp=logp, random=random, logp_partial_gradients = logp_partial_gradients, dtype=dtype, **arg_dict_out)
272
273 new_class.__name__ = name
/Applications/anaconda/lib/python2.7/site-packages/pymc/PyMCObjects.pyc in __init__(self, logp, doc, name, parents, random, trace, value, dtype, rseed, observed, cache_depth, plot, verbose, isdata, check_logp, logp_partial_gradients)
746 dtype=dtype,
747 plot=plot,
--> 748 verbose=verbose)
749
750 # self._logp.force_compute()
/Applications/anaconda/lib/python2.7/site-packages/pymc/Node.pyc in __init__(self, doc, name, parents, cache_depth, trace, dtype, plot, verbose)
214 self.extended_children = set()
215
--> 216 Node.__init__(self, doc, name, parents, cache_depth, verbose=verbose)
217
218 if self.dtype is None:
/Applications/anaconda/lib/python2.7/site-packages/pymc/Node.pyc in __init__(self, doc, name, parents, cache_depth, verbose)
125
126 # Initialize
--> 127 self.parents = parents
128
129 def _get_parents(self):
/Applications/anaconda/lib/python2.7/site-packages/pymc/Node.pyc in _set_parents(self, new_parents)
148
149 # Get new lazy function
--> 150 self.gen_lazy_function()
151
152 parents = property(
/Applications/anaconda/lib/python2.7/site-packages/pymc/PyMCObjects.pyc in gen_lazy_function(self)
795 [self]),
796 cache_depth=self._cache_depth)
--> 797 self._logp.force_compute()
798
799 self._logp_partial_gradients = {}
/Applications/anaconda/lib/python2.7/site-packages/pymc/LazyFunction.so in pymc.LazyFunction.LazyFunction.force_compute (pymc/LazyFunction.c:2409)()
/Applications/anaconda/lib/python2.7/site-packages/pymc/distributions.pyc in wrapper(**kwds)
2766 def wrapper(**kwds):
2767 value = kwds.pop('value')
-> 2768 return f(value, **kwds)
2769
2770 if arguments is None:
/Applications/anaconda/lib/python2.7/site-packages/hddm/likelihoods.pyc in wfpt_like(x, v, sv, a, z, sz, t, st, p_outlier)
50 #create likelihood function
51 def wfpt_like(x, v, sv, a, z, sz, t, st, p_outlier=0):
---> 52 return hddm.wfpt.wiener_like(x['rt'], v, sv, a, z, sz, t, st, p_outlier=p_outlier, **wp)
53
54