
Stardust
Security Audit

July 30th 2021

Version 1.0.0

Prepared by

Optilistic

Introduction 3

Overall Assessment 3

Specification 3

Source Code 4

Methodology 5

Issues Descriptions and Recommendations 6

Severity Level Reference 6

[STR-01] Galaxy owners can "farm" star sponsorships 7

[STR-02] Heightened chance of lost stars 7

[STR-03] Redundant authorization logic 8

[STR-04] Function visibility 8

[STR-05] Bit size discrepancy 9

Upgradability Options (added Aug 3rd) 10

Full Upgradability 10

Delegated Upgradability 10

Delegated Ownership 10

Test Coverage 11

Steps Taken 11

Test Results 11

Code Coverage 12

Evaluation 13

Automated Analysis 13

Mythril 13

Slither 13

Appendix 14

Exhibit A - Dependency Graphs 15

Exhibit B - Suggested Renamings, Refactors and Cleanups 16

Exhibit C - Comment and Documentation Typos and Potential Improvements 17

Exhibit D -Disclaimer 18

2

Introduction
This document includes the results of the preliminary security audit for Urbit’s smart

contract code as found in the section titled ‘Source Code’. The security audit was

performed by the Optilistic team from July 19th 2021 to July 30th 2021.

The purpose of this audit is to review the source code of the Stardust Solidity contracts,

and provide feedback on the design, architecture, and quality of the source code with an

emphasis on validating the correctness and security of the software in its entirety.

Disclaimer: While Optilistic’s review is comprehensive and has surfaced some changes

that should be made to the source code, this audit should not solely be relied upon for

security, as no single audit is guaranteed to catch all possible bugs.

Overall Assessment
We’ve identified a few issues of medium and low severity that should be considered to

improve the longevity of the project.

We did not identify any issues of high severity that would substantially compromise the

integrity of the project.

Specification
Our understanding of the specification was based on the following sources:

3

● Stardust Project Scope

● Direct discussions with the Urbit team

● Comments in the contract source code / README

● Various urbit blog posts

Source Code
The following source code was reviewed during the audit:

Repository Commit

Github c446b1f12f53fa75ea6c347daee1e15df562a81d

Specifically, we audited the following contracts:

Contract Sha256

IAzimuth.sol 7ef2451f17083000aa7fec31ea0135c2cfb2c245a
1fe078bbc389e5fecf21311

IEcliptic.sol 12ed5311d0df888bc94b417c36e4a9b3a9eb1be
4c8b03fb23f35f321e558d446

StarToken.sol 693b7937db9099d38e14d11efec2f41bde50afe9
dd268513cc19b5424f2ad12a

Treasury.sol c83cc46f5d0c34509a3400fecfcc43ae838e89110
7b86af3cf4ff25a8f4c2506

Note: This document contains an audit solely of the Solidity contracts listed above,

including the reading of relevant code in Azimuth and Ecliptic smart contracts. Specifically,

the audit pertains only to the contracts themselves, and does not pertain to any other

programs or scripts, including deployment scripts.

4

https://docs.google.com/document/u/0/d/1Nw0t-fCEIz8hbaFSFaSxQmn1CDKlBF_-PEPZTAOze1Q/edit
https://urbit.org/grants/escape
https://github.com/ransonhobbes/stardust

Methodology
The audit was conducted in several steps.

First, we reviewed in detail all available documentation and specifications for the project,

as described in the ‘Specification’ section above.

Second, we performed a thorough manual review of the code, checking that the code

matched up with the specification, as well as the spirit of the contract (i.e. the intended

behavior). During this manual review portion of the audit we primarily searched for

security vulnerabilities, unwanted behavior vulnerabilities, and problems with systems of

incentives.

Third, we performed the automated portion of the review consisting of measuring test

coverage (while also assessing the quality of the test suite) and evaluating the results of

various symbolic execution tools against the code.

Lastly, we performed a final line-by-line inspection of the code – including comments –in

effort to find any minor issues with code quality, documentation, or best practices.

5

Issues Descriptions and Recommendations
Issues Descriptions and Recommendations 6

[STR-01] Galaxy owners can "farm" star sponsorships 7

[STR-02] Heightened chance of lost stars 7

[STR-03] Redundant authorization logic 8

[STR-04] Function visibility 8

[STR-05] Bit size discrepancy 8

Severity Level Reference

Level Description

High The issue poses existential risk to the
project, and the issue identified could lead

to massive financial or reputational
repercussions.

Medium The potential risk is large, but there is
some ambiguity surrounding whether or
not the issue would practically manifest.

Low The risk is small, unlikely, or not relevant to
the project in a meaningful way.

Code Quality
The issue identified does not pose any

obvious risk, but fixing it would improve
overall code quality, conform to

recommended best practices, and perhaps
lead to fewer development issues in the

future.

6

[STR-01] Galaxy owners can "farm" star sponsorships

The Treasury.sol contract’s deposit function is not concerned with escapes. Consequently,

a galaxy owner can “farm” star sponsorships by performing the following:

1. Deposit a star

2. Wait for another star deposit

3. Redeeming the newer star

4. Escape the star to itself

5. Re-deposit the star

6. Go to step 2 of this list

This does not affect the integrity of Stardust itself, but it could incentivize toxic behavior

now or in the future if/when there are incentives for galaxies to increase the number of

sponsorships they have.

Consider: Update Treasury.sol’s deposit function to only accept stars that have not been

escaped.

[STR-02] Heightened chance of lost stars

StarToken.sol is an ERC-777, which allows users to trade STAR in small increments.

Because of this, there is generally a higher chance of stars getting “stuck” in Treasury.sol

when accounts lose access to their STAR.

We consider this to be of low severity since the same reasoning can be applied to accounts

that hold stars directly. However, at least one star is highly likely to be stuck in

Treasury.sol; any single fraction of STAR lost – by any account – would immediately cause

the first star in the Treasury.sol to be permanently unredeemable.

7

Consider: Update StarToken.sol’s constructor to mint some amount of STAR to the

current Ecliptic contract, in case Urbit’s senate wants to deal with stuck stars in the

future.

[STR-03] Redundant authorization logic

The Treasury.sol contract’s redeem function has the following check:

require(azimuth.isOwner(_star, address(this)));

This check is also done in Azimuth.canTransfer.

Consider: Remove this check and leave authorization entirely to Ecliptic.transferPoint, in

the rare chance Ecliptic’s authorization logic diverges from this check in the future (due to

a contract upgrade), which would cause Treasury to unnecessarily restrict its outbound

transfers.

Removing this line would also increase branch coverage, as it’s currently not possible to

write a test case to make this require statement fail.

[STR-04] Function visibility

Consider changing the visibility of Treasury.sol’s deposit and redeem functions from

public to external, communicating and enforcing that this contract will not be depositing

any stars to itself, as well as saving gas for senders.

Consider making the same change to StarToken.sol’s mint and ownerBurn functions to

also save on gas.

8

[STR-05] Bit size discrepancy

The Treasury.sol contract deals with stars in uint16 instead of Ecliptic’s uint32 for general

points. If this is guaranteed to be safe, consider writing a comment explaining why.

9

Upgradability Options (added Aug 3rd)
If upgradability for Stardust is desired, there are three main options:

Full Upgradability
Just like the relationship between Azimuth, a data layer contract, and Ecliptic, a business

logic layer contract, you could split Treasury.sol into these two separate contract types.

● Pro: You gain full upgradability, allowing you to upgrade the logic behind Treasury

to anything you need.

● Con: Complexity is greatly increased. In addition to the split, you would also need

to add a community-trusted way of upgrading the contract, e.g. governance.

Delegated Upgradability
Similar to full upgradability, this solution would split Treasury.sol into two separate

contract types. However, instead of implementing separate governance, you can delegate

governance to Ecliptic instead, allowing upgrades to Ecliptic to also include upgrades to

Stardust.

● Pro: Less complex than full upgradability (no governance coding).

● Con: Still a significant enough change to require another round of audits.

Delegated Ownership
Rather than implementing upgradability, a perhaps better option would be to update

Treasury.sol to inherit Ownable, set Ecliptic as the owner, and allow the owner to

manipulate assets directly.

● Pro: Far less complexity than implementing upgradability, and would not require

another round of audits.

● Pro: Allows the Urbit Senate to upgrade Ecliptic to deal with Stardust’s assets in

the future. i.e. solving [STR-02]

● Con: Cannot upgrade the business logic of Treasury.sol.

10

Test Coverage

Steps Taken
● $ npm install --save-dev solidity-coverage

● Added require('solidity-coverage') to hardhat.config.js

Test Results
Output of running npm test at the root of the project directory:

Compiling 20 files with 0.4.24

azimuth-solidity/contracts/EclipticBase.sol:56:3: Warning:

Function state mutability can be restricted to view

function onUpgrade()

^ (Relevant source part starts here and spans across multiple

lines).

Compiling 14 files with 0.8.4

Compilation finished successfully

StarToken

✓ has a name

✓ has a symbol

✓ assigns the initial total supply to the creator

✓ should contain zero balance once deployed (44ms)

✓ allows operator burn (48ms)

Treasury

0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266

0x70997970C51812dc3A010C7d01b50e0d17dc79C8

0x3C44CdDdB6a900fa2b585dd299e03d12FA4293BC

11

✓ has no assets when deployed

✓ knows how to find azimuth

✓ deploys a token contract with no initial supply

✓ allows deposit of star from owner (176ms)

✓ allows retrieval of all assets in order

✓ doesn't allow deposit of non-stars

✓ doesn't allow deposit from non-owner (53ms)

✓ allows redeem from token holder (162ms)

✓ allows deposit-send-redeem pattern (207ms)

✓ doesn't allow redeem from non-holder

✓ doesn't allow redeem when balance is too low (129ms)

✓ doesn't allow inbound safe transfer (164ms)

17 passing (3s)

Code Coverage
Code coverage was measured by running solidity-coverage at the root of the project.

File %Stmts %Branch %Funcs %Lines Uncovere
d Lines

IAzimuth.sol
100 100 100 100

IEcliptic.sol 100 100 100 100

StarToken.sol 100 100 100 100

Treasury.sol 100 83.33 100 100

All Files 100 83.33 100 100

12

Evaluation
The code coverage for the Urbit repository is good. Resolving STR-03 will bring it even

closer to 100%.

Automated Analysis

Mythril
Mythril is a security analysis tool that uses concolic analysis, taint analysis, and control

flow checking to detect a variety of security vulnerabilities.

In order to run Mythril against the codebase we performed the following steps:

● $ docker run -v $(pwd):/tmp mythril/myth analyze

/tmp/contracts/StarToken.sol

● $ docker run -v $(pwd):/tmp mythril/myth analyze

/tmp/contracts/Treasury.sol

Mythril reported a successful analysis and had no issues to report. For the record, this

does not mean there are zero issues with the code, only that this tool did not find any.

Slither
Slither is a solidity static analysis framework. It detects many vulnerabilities, from high

threats to benign ones, of which there are usually many.

In order to run Slither against the codebase we performed the following steps:

● $ slither . --filter-paths

"Address.sol|AddressUtils.sol|Azimuth.sol|Claims.sol|Eclipt

ic.sol|EclipticBase.sol|ERC721.sol|ERC721Basic.sol|ERC721Re

ceiver.sol|ERC777.sol|Ownable.sol|Polls.sol|SafeMath.sol"

Slither identified some benign reentrancy vulnerabilities, but manual inspection revealed

them to be false positives.

13

https://github.com/ConsenSys/mythril
https://github.com/crytic/slither

Slither also identified some code quality issues, which we recorded in the “Issues

Descriptions and Recommendations” section.

Appendix

Appendix 14

Exhibit A - Dependency Graphs 15

Exhibit B - Suggested Renamings, Refactors, and Cleanups 16

Exhibit C - Comment and Documentation Typos and Potential Improvements 17

Exhibit D - Disclaimer 18

14

Exhibit A - Dependency Graphs
Black, filled-in circles represent “inherits from” relationships and white circles represent “imports”
relationships.

15

Exhibit B - Suggested Renamings, Refactors and Cleanups

Treasury

● The constant oneStar in Treasury.sol should be cased as ONE_STAR by convention.

StarToken

● No issues found.

16

Exhibit C - Comment and Documentation Typos and Potential

Improvements

Treasury

● Line 12: Comment appears to be incomplete.

● Line 112: Comment reads “star tokens” (plural), which is inconsistent with other

comments that read in the singular.

● Line 125: Consider adding spaces around the ‘greater than’ operator to be

stylistically consistent with line 122.

StarToken

● No issues found.

17

Exhibit D -Disclaimer
Optilistic makes no warranties, either express, implied, statutory, or otherwise, with

respect to the services or deliverables provided in this report, and Optilistic specifically

disclaims all implied warranties or merchantability, fitness for a particular purpose,

noninfringement and those arising from a course of dealing, usage or trade with respect

thereto, and all such warranties are hereby excluded to the fullest extent permitted by

law.

Optilistic will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand against company by any other party. In no event will

Optilistic be liable for consequential, incidental, special, indirect, or exemplary damages

arising out of this agreement or any work statement, however caused and (to the fullest

extent permitted by law) under any theory of liability (including negligence), even if

Optilistic has been advised of the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by

the Urbit team and only the source code Optilistic notes as being within the scope of

Optilistic’s review within this report. This report does not include an audit of the

deployment scripts used to deploy the Solidity contracts in the repository corresponding

to this audit. Specifically, for the avoidance of doubt, this report does not constitute

investment advice, is not intended to be relied upon as investment advice, is not an

endorsement of this project or team, and it is not a guarantee as to the absolute security

of the project. In this report you may through hypertext or other computer links, gain

access to websites operated by persons other than Optilistic. Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of

such websites’ owners. You agree that Optilistic is not responsible for the content or

operation of such websites, and that Optilistic shall have no liability to your or any other

person or entity for the use of third party websites. Optilistic assumes no responsibility

for the use of third party software and shall have no liability whatsoever to any person or

entity for the accuracy or completeness of any outcome generated by such software.

18

