
Urbit

Stardust
Smart Contract Security Review

Version: 1.0

September, 2021

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5
Treasury Cannot Recover Star Mistakenly Transferred To It . 6
Treasury Cannot Recover StarToken Tokens Mistakenly Transferred To It 7
Multiple Treasury and StarToken Contracts Allowed . 8Potentially Unclaimable Star Upon Losing Tokens . 9Lack of Return Value in redeem() Function . 10Different Star Valuations Motivates Arbitrage and Flashloan . 12Operator Not Supported and Redundant Checks on Function deposit() 13ERC-777 Related Reentrancy Considerations . 15Miscellaneous Treasury General Comments . 17

A Test Suite 18

B Vulnerability Severity Classification 19

1

Stardust Introduction

Introduction

Sigma Prime was commercially engaged by Tlon Corportation to perform a time-boxed security review of a setof smart contracts related to the Stardust project. The review focused solely on the security aspects of theSolidity implementation of the contract, though general recommendations and informational comments are alsoprovided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the smart contract contained within the scope ofthe security review. A summary followed by a detailed review of the discovered vulnerabilities is then givenwhich assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/closed/re-
solved status and a recommendation. Additionally, findings which do not have direct security implications (butare potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Urbit smart contract.

Overview

Urbit is designed as a peer-to-peer personal operating system running on cloud infrastructures. Azimuth is one ofthe core subsystems in Urbit that manages identities or address space. It is essentially a public key infrastructurebuilt on top of smart contract-based blockchains. Its structure is similar to how IPv4 is designed, with dedicatedterms such as galaxies, stars, planets, and moons, that identify the granularity of the identity, similar to classfuladdressing in IPv4. While the Azimuth contract is used to store all identity information, all operations to Azimuthmust go through the Ecliptic contract, which owns Azimuth.
The Stardust project is a set of smart contracts developed by community members allowing owners of Azimuthidentities to deposit their related ERC-721 tokens and obtain a fungible token (StarToken, an ERC-777 token)representing this ownership. Specifically, the Treasury contract allows a star owner to deposit the star and
receive 1e18 $STAR tokens. Anyone can also redeem a star from the Treasury contract for a fix amount of
1e18 $STAR tokens. $STAR tokens are therefore only minted when a star is deposited, and burned when a staris redeemed.

Page | 2

https://urbit.org/blog/the-urbit-address-space

Stardust Security Assessment Summary

Security Assessment Summary

This review was conducted on the Treasury contract hosted on the Stardust repository, assessed at commitc446b1f.
Note: the Azimuth, Ecliptic and StarToken contracts were excluded from the scope of this assessment but used ex-
tensively during testing. Additionally, OpenZepplin contracts and libraries were also excluded from the scope of this
review.

The manual code review section of the report, focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. Specifically, their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril

• Slither: https://github.com/trailofbits/slither

• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 9 issues during this assessment. Categorized by their severity:
• Low: 2 issues.
• Informational: 7 issues.

Page | 3

https://github.com/ransonhobbes/stardust
https://github.com/ransonhobbes/stardust/tree/c446b1f12f53fa75ea6c347daee1e15df562a81d
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Stardust Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the scope of this review. Eachvulnerability has a severity classification which is determined from the likelihood and impact of each issue bythe matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
UTR-01 Treasury Cannot Recover Star Mistakenly Transferred To It Low Open

UTR-02 Treasury Cannot Recover StarToken TokensMistakenly TransferredTo It Low Open

UTR-03 Multiple Treasury and StarToken Contracts Allowed Informational Open

UTR-04 Potentially Unclaimable Star Upon Losing Tokens Informational Open

UTR-05 Lack of Return Value in redeem() Function Informational Open

UTR-06 Different Star Valuations Motivates Arbitrage and Flashloan Informational Open

UTR-07 Operator Not Supported and Redundant Checks on Function
deposit() Informational Open

UTR-08 ERC-777 Related Reentrancy Considerations Informational Open

UTR-09 Miscellaneous Treasury General Comments Informational Open

5

Stardust Detailed Findings

UTR-01 Treasury Cannot Recover Star Mistakenly Transferred To It
Asset Treasury.sol

Status Open

Rating Severity: Low Impact: Low Likelihood: Low

Description

A user can mistakenly transfer ownership of a star to the Treasury contract. Consider the following case:

1. Alice spawns a star;
2. Instead of setting Treasury as a proxy through Ecliptic.setSpawnProxy() , Alice calls a different func-

tion, Ecliptic.transferPoint() . The star ownership changes from Alice to Treasury ;
3. Treasury was not notified of such transfer and therefore the star is not recorded in the assets ;
4. Alice cannot take back the mistakenly transferred star.

Recommendations

Consider adding a function to account for transferred stars into the assets array. For this purpose, a mappingcan help check whether the star has been included in assets :
mapping (uint16 => bool) assetMap ;

Then, the following function can be used.
function addToAsset (uint16 _star) public {

require (assetMap [_star] == false , " Treasury : The star is in the assets ");
assets . push (_star);
assetMap [_star] = true ;

}

Notice that additional instructions are necessary on the functions deposit() and redeem() . In the deposit()
function, the following instruction can be added on line [111]:
assetMap [_star] = true ;

While in the redeem() function, the following instruction can be added on line [130]:
delete assetMap [_star];

Page | 6

Stardust Detailed Findings

UTR-02 Treasury Cannot Recover StarToken Tokens Mistakenly Transferred To It
Asset Treasury.sol

Status Open

Rating Severity: Low Impact: Low Likelihood: Low

Description

A Treasury contract is coupled with a StarToken (ERC-777 standard) token. StarToken tokens are minted
to a user who deposits a star to the Treasury contract and burned when a user redeems a star. The Treasury

contract does not have a function to sweep over Startoken tokens mistakenly sent to it.
Consider the following scenario:

1. Alice deposits a star and receives 1e18 StarToken ;
2. Alice mistakenly transfers some of her StarToken tokens, say 100 tokens, to Treasury contract;
3. Alice cannot recover the mistakenly transferred tokens, while the Treasury contract also cannot recoverthe tokens.

Recommendations

Consider introducing a function where a privileged account (e.g. a governance contract, say Governor), canrecover any excess tokens:
function recoverTokens (address _to) onlyGovernor public {

uint256 tokenAmount ;
if(assets . length > 0)
tokenAmount = startoken . balanceOf (address (this)) % (assets . length * oneStar);
else
tokenAmount = startoken . balanceOf (address (this));
if(tokenAmount > 0) {

startoken . transferFrom (address (this), _to , tokenAmount);
}

}

Note that thiswould require the governor to have an allowance on behalf of the Treasury contract in the StarToken
contrat

Page | 7

Stardust Detailed Findings

UTR-03 Multiple Treasury and StarToken Contracts Allowed
Asset Treasury.sol

Status Open

Rating Informational

Description

The Treasury contract deploys a new StarToken contract during contract creation, as indicated on line [26]:
StarToken public startoken = new StarToken (0, new address [](0));

It is possible to deploy multiple Treasury contracts. It also means that there can be multiple StarToken

contracts, where tokens in one StarToken contract cannot redeem a star in other Treasury contracts. Thiscan potentially be confusing or misleading for users.

Recommendations

Make sure this behaviour is intended and consider deploying a dedicated StarToken contract and hardcodingits address in the Treasury contract.

Page | 8

Stardust Detailed Findings

UTR-04 Potentially Unclaimable Star Upon Losing Tokens
Asset Treasury.sol

Status Open

Rating Informational

Description

The Treasury contract requires a fixed amount of 1e18 STAR tokens to redeem a star asset. Since STAR tokens
are only minted when users deposit stars, the amount of tokens held by the Treasury must be 1e18 multiplied
by Treasury ’s asset count (equal to the number of deposited stars). That way, when all stars are redeemed, the
total balance of STAR equals to zero.
This coupling between Treasury and STAR tokens means that if even one token is lost, i.e. sent to an address
without a known related private key, then there should be at least one unclaimable star in the Treasury ’s asset.

Recommendations

Make sure this behaviour is intended.

Page | 9

Stardust Detailed Findings

UTR-05 Lack of Return Value in redeem() Function
Asset Treasury.sol

Status Open

Rating Informational
arb:market

Description

The Treasury contract can be interacted with from "externally owned accounts" (EOAs) and other smart con-
tracts. When calling the redeem() function, an EOA’s UI can track which _star it receives from Treasurycontract through emitted events.
However, a contract account cannot read events data, and therefore, cannot necessarily easily work out what
_star it receives.
What a redeeming contract can do is predict what _star it will receive from Treasury by retrieving the last
item in the Treasury.assets array.

Recommendations

Consider updating the redeem() function to introduce a return value:
function redeem () public returns (uint16) {

// must have sufficient balance
require (startoken . balanceOf (_msgSender ()) >= oneStar);

// there must be at least one star in the asset list
require (assets .length >0);

// remove the star to be redeemed
uint16 _star = assets [assets .length -1];
assets .pop ();

// check its ownership
require (azimuth . isOwner (_star , address (this)));

// burn the tokens
startoken . ownerBurn (_msgSender (), oneStar);

// transfer ownership
IEcliptic ecliptic = IEcliptic (azimuth . owner ());
ecliptic . transferPoint (_star , _msgSender (), true);

emit Redeem (azimuth . getPrefix (_star), _star , _msgSender ());

return _star ;
}

Such that a calling contract may catch the return value as follows:

Page | 10

Stardust Detailed Findings

event eStarRedeem (uint16 point);

function redeemOneStar () onlyOwner public {
require (treasury . startoken (). balanceOf (address (this)) >= ONE_STAR ,
" Recipient : STAR balance not enough ");
uint16 _star = treasury . redeem ();
emit eStarRedeem (_star);

}

Note that the snippets above does not account for other suggestions in this report, i.e. changing _star datatype from uint16 to uint32 for code consistency.
The recommended change’s impact on gas costs is insignificant, that is, from 230, 327 gas in the original functionto 230, 398 gas in the modified function, or 0.03% gas increase.

Page | 11

Stardust Detailed Findings

UTR-06 Different Star Valuations Motivates Arbitrage and Flashloan
Asset Treasury.sol

Status Open

Rating Informational

Description

Urbit’s stars are NFTs that do not necessarily have equal value, as can be seen onOpensea where stars are tradedat different prices (at the time of writing, the highest asking price for an Urbit star is 888 ETH and the lowest is1.8 ETH).
On the other hand, the Treasury contract treats all stars equally from a valuation perspective which opens uptwo potentially interesting scenarios:

• A user deposits a star with a market price less than 1e18 $STAR tokens. In this case, the user profits fromthe difference between the market value and the received $STAR tokens. This activity is similar to anarbitrage and can be applied to the DeFi context (would simply require a market pair with $STAR token ona decentralised exchange such as Uniswap).
• A user finds a star worth more than 1e18 $STAR tokens in the Treasury contract’s assets inventory.

The user knows that the inventory release is done in LIFO (Last In First Out) fashion. To take out thewantedstar from the inventory, say in n-th position from the last, the user takes a n∗1e18 $STAR tokens loan fromthe market, calls the redeem() function n times, keeps the star they want, then returns n − 1 stars to the
Treasury contract by calling the deposit() function n − 1 times. The user then sells the acquired staron the market and pays the loan interest by using profits.

Recommendations

Make sure this behaviour is understood and intended.

Page | 12

https://opensea.io/collection/urbit-id
https://opensea.io/assets/0x9ef27de616154ff8b38893c59522b69c7ba8a81c/13975
https://opensea.io/assets/0x9ef27de616154ff8b38893c59522b69c7ba8a81c/15828

Stardust Detailed Findings

UTR-07 Operator Not Supported and Redundant Checks on Function deposit()

Asset Treasury.sol

Status Open

Rating Informational

Description

The Ecliptic contracts allows for an operator to perform actions on behalf of a point (or in this context, star)
owner, for example, to call the function transferPoint() . This is reflected on line [457] of Ecliptic.sol asfollows.
require (azimuth . canTransfer (_point , msg. sender));

While Azimuth.canTransfer() is implemented on line [1098-1108] of Azimuth.sol as follows:
function canTransfer (uint32 _point , address _who)

view
external
returns (bool result)
{

Deed storage deed = rights [_point];
return ((0 x0 != _who) &&
((_who == deed. owner) ||
(_who == deed. transferProxy) ||
operators [deed. owner][_who]));

}

The snippets above indicate that, other than the owner and the transfer proxy, an appointed operator should beallowed to transfer point ownership through the function Ecliptic.transferPoint() .
This capability is useful if the real owner (EOA) wants to manage their point s in a management contract and
wishes to interact with the Treasury contract through that management contract instead of directly from theEOA.
However, the following code path on line [86-90] in the Treasury contract prevents an operator from deposit-ing a spawned star.
if (

azimuth . isOwner (_star , _msgSender ()) &&
azimuth . getSpawnCount (_star) cd == 0 &&
azimuth . isTransferProxy (_star , address (this))
) {

Recommendations

If there is no specific reason why only spawned star owners are allowed to call the function deposit() , we
recommend adjusting the Treasury contract to enable interactions with appointed operators by changing the
condition checking in line [87] and line [89].

Page | 13

Stardust Detailed Findings

if (
azimuth . getSpawnCount (_star) == 0

) {

Note that depositing an unspawned star requires direct interaction with the star’s prefix owner or its spawn
proxy as specified in Azimuth.sol on line [979-988] below, and therefore the operator cannot deposit un-spawned star.
function canSpawnAs (uint32 _point , address _who)

view
external
returns (bool result)
{

Deed storage deed = rights [_point];
return ((0 x0 != _who) &&
((_who == deed. owner) ||
(_who == deed. spawnProxy)));

}

Also, a set of checks have been conducted in Function Ecliptic.spawn() , and therefore redundant checks can
be removed from Treasury.deposit() . A simplified version of the deposit() function could be as follows:
function deposit (uint16 _star)

public
{

require (azimuth . getPointSize (_star) == IAzimuth .Size.Star);
IEcliptic ecliptic = IEcliptic (azimuth . owner ());

// case (1):
if (azimuth . getSpawnCount (_star) == 0) {

// transfer ownership of the _star to :this contract
ecliptic . transferPoint (_star , address (this), true);

}
// case (2):
else
{

ecliptic . spawn (_star , address (this));
}

// update state to include the deposited star
//
assets . push (_star);

// mint star tokens and grant them to the :msg. sender
//
startoken .mint(_msgSender (), oneStar);
emit Deposit (azimuth . getPrefix (_star), _star , _msgSender ());

}

Page | 14

Stardust Detailed Findings

UTR-08 ERC-777 Related Reentrancy Considerations
Asset StarToken.sol

Status Open

Rating Informational

Description

The StarToken contract implements the ERC777 token standard using the related OpenZeppelin library. Oneof the most distinguishable features of the ERC777 standard compared to ERC20 is that if the token receiveris a contract, then the contract can implement the ERC777Recipient interface which defines the function
tokensReceived() . This function is a hook that will be triggered every time the contract receives a token. Toenable the hook trigger, the receiving contract must register itself to the ERC1820 contract registry.
This unique ERC777 feature can be weaponised to trigger a reentrancy [3] condition. To be successful, thisattack would require the victim contract to be affected by a security flaw as the result of not abiding by therecommended Checks-Effects-Interactions pattern.
This reentrancy condition can allow attackers to use two stars to switch for any other star in the list (see thisrelevant issue).
Say we have assets = [a, b, c] and we have a balance of 2e18 StarTokens . The standard redeem()workflow would normally only allow us to redeem the Star c . However, consider the following:

1. redeem() (1):
• pop(c) -> assets = [a, b]

• ownerBurn(1e18) - reenter on tokensToSend() before we’ve burnt our balance of 2e18

2. redeem() (2):
• pop(b) -> assets = [a]

• ownerBurn(1e18) - reenter on tokensToSend() before we’ve burnt our balance of 2e18

3. redeem() (3):
• pop(a) -> assets = []

• ownerBurn(1e18) -> balance = 1e18

• transferPoint(a, attacker)

4. continue redeem(2) :
• ownerBurn(1e18) -> balance = 0

• transferPoint(b, attacker)

5. deposit(b) :
• transferPoint(b, treasury)

Page | 15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC777/ERC777.sol
https://docs.soliditylang.org/en/v0.8.7/security-considerations.html#use-the-checks-effects-interactions-pattern

Stardust Detailed Findings

• push(b) -> assets =[b]

• mint(1e18, attacker) -> balance = 1e18

6. continue redeem(3) :
• ownerBurn(1e18) -> balance = 0

• transferPoint(c, attacker)

7. deposit(c) :
• transferPoint(c, treasury)

• push(c) -> assets = [b, c]

• mint(1e18, attacker) -> balance = 1e18

The attacker managed to own star a and only spend 1e18 for it, bypassing the LIFO ("Last In First Out") queue.
The testing team could not identify an exploitable attack vector for reentrancy on the Treasury contract.
However, the testing team notes that the ERC777 and ERC1820 contracts were not included in the scope ofthis review. As a result, the testing team cannot express any opinions related to the security posture of thesecontracts.

Recommendations

ERC777 token contracts do significantly increase the attack surface available to malicious users, compared tosimpler ERC20 token contracts. Consider whether the added complexity is worth the extra features provided.

Page | 16

Stardust Detailed Findings

UTR-09 Miscellaneous Treasury General Comments
Asset Treasury.sol

Status Open

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security impli-cations:

1. No Clear Revert Message
The Treasury contract does not provide clear revert messages upon reverting. Therefore, users or de-velopers may find it hard to track why a transaction fails.
We suggest introducing the following revert messages:

• line [81]: "Treasury: Must be a star".
• line [122]: "Treasury: Not enough balance".
• line [125]: "Treasury: No star available to redeem".
• line [132]: "Treasury: Treasury does not own the star asset to redeem".

2. Redundant Star Ownership Check
Treasury contract acquires stars from users who called function deposit() . In this function, the de-
posited stars’ ownership is transferred from the users to Treasury contract and stored in assets list.
Function redeem() redeems a star by burning 1e18 STAR tokens and transfers the ownership of a starfrom assets list to the redeeming user. However, there is an extra star ownership check in line [132]which is not necessary.
As a recommendation, the code on line [132] can safely be removed.

3. Data Type Unmatched: uint16 for _star and uint32 for point

Variable _star used in Treasury contract is a uint16. This variable matches the point variable in the
Azimuth and Ecliptic contracts. _star and point are of type uint16 and uint32 respectively.
Although a _star address is represented in 16 bits data, we recommend keeping the _star data type
to uint32 for code consistency.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 17

https://urbit.org/docs/glossary/star

Stardust Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The brownie framework was used to perform these tests and the output is given below.

test_const PASSED [3%]
test_mint PASSED [6%]
test_burn PASSED [9%]
test_approve PASSED [12%]
test_authorizeOperator PASSED [15%]
test_revokeOperator PASSED [18%]
test_operatorBurn PASSED [21%]
test_operatorSend PASSED [24%]
test_ownerBurn PASSED [27%]
test_renounceOwnership PASSED [30%]
test_send PASSED [33%]
test_transfer PASSED [36%]
test_transferFrom PASSED [39%]
test_transferOwnership PASSED [42%]
test_constructor PASSED [45%]
test_constructor_multi_deployments PASSED [48%]
test_initial_state PASSED [51%]
test_deposit_spawned PASSED [54%]
test_deposit_spawned_proxy_not_set PASSED [57%]
test_deposit_spawned_transfer_to_treasury PASSED [60%]
test_deposit_unspawned PASSED [63%]
test_deposit_lost_token_redeem_failed PASSED [66%]
test_redeem_owner PASSED [69%]
test_redeem_alice PASSED [72%]
test_redeem_extrabalance PASSED [75%]
test_redeem_no_star PASSED [78%]
test_redeem_many_stars PASSED [81%]
test_deposit_redeem_recipient PASSED [84%]
test_deposit_redeem_recipient_mod PASSED [87%]
test_deposit_redeem_recipient_malicious PASSED [90%]
test_azimuth PASSED [93%]
test_startoken PASSED [96%]
test_gldToken PASSED [100%]

Page | 18

Stardust Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.
html. [Accessed 2018].

[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].
[3] Sigma Prime. Solidity Security - Reentrancy. Blog, 2018, Available: https://blog.sigmaprime.io/

solidity-security.html#reentrancy. [Accessed 2018].

Page | 19

https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/
https://blog.sigmaprime.io/solidity-security.html#reentrancy
https://blog.sigmaprime.io/solidity-security.html#reentrancy

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Treasury Cannot Recover Star Mistakenly Transferred To It
	Treasury Cannot Recover StarToken Tokens Mistakenly Transferred To It
	Multiple Treasury and StarToken Contracts Allowed
	Potentially Unclaimable Star Upon Losing Tokens
	Lack of Return Value in redeem() Function
	Different Star Valuations Motivates Arbitrage and Flashloan
	Operator Not Supported and Redundant Checks on Function deposit()
	ERC-777 Related Reentrancy Considerations
	Miscellaneous Treasury General Comments

	Test Suite
	Vulnerability Severity Classification

