--------- Mensagem encaminhada ---------
De:
ppg.modelagemcomputacional UFJF <ppg.modelagem...@ufjf.br>Data: seg., 20 de out. de 2025 às 13:41
Assunto: Divulgação de Defesa de Tese - Kaike Sa Teles Rocha Alves - "NFISiS: New Perspectives on Fuzzy Inference Systems Applied to Renewable Energy, Finance, and Cryptocurrency"
Para: <
discente...@ufjf.br>, <
docentes...@ufjf.br>
Prezados(as),
Vimos por meio deste divulgar a Banca Examinadora de Defesa de Tese do(a) discente Kaike Sa Teles Rocha Alves, a qual será realizada de forma virtual em conformidade com a Resolução CSPP/UFJF nº 28, de 07 de junho de 2023 e com a Portaria PROPP/UFJF nº 53/2024 que estabelece procedimentos para a realização de Bancas de Defesa de Dissertação/Tese e dá outras providências.
Título: NFISiS: New Perspectives on Fuzzy Inference Systems Applied to Renewable Energy, Finance, and Cryptocurrency
Candidato(a): Kaike Sa Teles Rocha Alves
Data: 05/11/2025
Horário: 09:00
Local: De forma virtual, conforme Resolução CSPP/UFJF nº 28, de 07 de junho de 2023 e com a Portaria PROPP/UFJF nº 53/2024
Orientador(a):
Prof. Dr. Eduardo Pestana de Aguiar – UFJF
Coorientador(es):
Prof. Dr. Direnc Pekaslan – University of Nottingham, Reino Unido
Prof. Dr. Leonardo Goliatt da Fonseca (membro titular interno) – UFJF
Prof. Dr. Moises Vidal Ribeiro (membro titular interno) – UFJF
Prof. Dr. Frederico Gadelha Guimarães (membro titular externo) – UFMG
Prof. Dr. Petronio Cândido de Lima e Silva (membro titular externo) – IFNMG
Prof. Dr. Arthur Caio Vargas e Pinto (membro titular externo) – CEFET-MG
Abstract
Fuzzy inference systems, widely studied in the literature, are machine learning models that balance accuracy and interpretability/explainability. The two main types of fuzzy inference systems are Mamdani and Takagi-Sugeno-Kang. While Mamdani models prioritize interpretability, Takagi-Sugeno-Kang models achieve higher accuracy by approximating nonlinear systems through a collection of linear subsystems. However, there is no standardized method for design fuzzy rules. Existing techniques often suffer from limitations, including a lack of direct control over the number of rules, an excessive number of hyperparameters, and increased complexity. To address these issues, this work introduces new fuzzy inference systems that comprises a novel data-driven mechanism to define Mamdani and Takagi-Sugeno-Kang rules while reducing complexity, minimizing hyperparameters, enabling direct control over the number of rules, and enhancing interpretability. Additionally, feature selection techniques, including genetic algorithms and ensemble methods, are incorporated to improve the models' ability to handle large datasets, optimize performance, increase interpretability, and prevent overfitting. The proposed models are evaluated using benchmark time series, renewable energy, financial, and cryptocurrency datasets. Their performance is compared against state-of-the-art machine learning models, including classical approaches, deep learning architectures, and rule-based evolving fuzzy systems. The evaluation considers both error metrics and the final number of rules. The results indicate that the proposed models effectively handle complex, non-stationary datasets, such as those in finance and cryptocurrency. All proposed models are available as a Python package, which can be installed via pip: pip install nfisis (https://pypi.org/project/nfisis/0.0.4/).
You received this message because you are subscribed to the Google Groups "DOCENTES PPGMC" group.
To unsubscribe from this group and stop receiving emails from it, send an email to
.
.