Gust calculation

342 views
Skip to first unread message

Will H

unread,
Feb 24, 2024, 12:17:15 PM2/24/24
to wrfpython-talk
Has anyone ever figured out how to calculate wind gusts from wrf output?

Leo

unread,
Feb 24, 2024, 2:26:57 PM2/24/24
to wrfpython-talk, hathew...@gmail.com
I would also be interested in knowing how to calculate wind gusts using the output of the WRF model.

Will H

unread,
Feb 24, 2024, 9:34:07 PM2/24/24
to Leo, wrfpython-talk
I have a function but I can't get it to work properly. 

It's the NAM/GFS Fortran code

Leonardo Jiménez

unread,
Feb 25, 2024, 1:15:00 AM2/25/24
to Will H, wrfpython-talk
I found some equations in the article ( https://repositorio.aemet.es/bitstream/20.500.11765/5238/1/P11-trabajo%20Vindel%20et%20al.pdf ). 
If you can share the equation that you found that uses NAM/GFS Fortran code. 

Marco Miani

unread,
Feb 25, 2024, 3:58:37 AM2/25/24
to Leonardo Jiménez, Will H, wrfpython-talk
Hi all. 



I start admitting my ignorance with this, but still I'd like to ask my question: 

Does it really make any sense to calculate wind gusts, using HOURLY wind data? 

Wind gusts, typically, are calculated relying on records sampled at minutes intervals. Instead, in our cases (WRF and paper posted here), deal with hourly wind data (model outputs). 

Just a thought....







--
You received this message because you are subscribed to the Google Groups "wrfpython-talk" group.
To unsubscribe from this group and stop receiving emails from it, send an email to wrfpython-tal...@ucar.edu.
To view this discussion on the web visit https://groups.google.com/a/ucar.edu/d/msgid/wrfpython-talk/CADkHQmbPsRAzVj6HVW4adLXfHma-AMrAkWTEaArKgou8%2B06rfg%40mail.gmail.com.

Will H

unread,
Feb 25, 2024, 5:43:50 AM2/25/24
to wrfpython-talk, Marco Miani, Will H, wrfpython-talk, leonardoj...@gmail.com

Well for my case I sample the WRF data every 15 mins.  But the thought I have is that by calculating gusts you could see the trend for energy production (wind farms) or SFC fronts.  

I'm also making a python meteogram using wrf data and the gusts would be part of that as well for a specific location using lat long.  

As for the codes I can share them later.  The are written in Fortran though. 

Leonardo Jiménez

unread,
Feb 25, 2024, 7:06:14 AM2/25/24
to wrfpython-talk, Marco Miani
I have some knowledge of the Fortran language and I am interested in the topic.
Reading the code is fine.

Will H

unread,
Feb 25, 2024, 7:55:04 AM2/25/24
to wrfpython-talk, leonardoj...@gmail.com, wrfpython-talk, Marco Miani
FROTRAN CODE 1

      !
      !  Within PBL depth, calculate excess wind speed over surface speed
      !  at each level. Multiply this excess by a coefficient (f(z)) that
      !  decreases with height from 1.0 to 0.5 at 1 km height, and is 0.5                  <-   code does not follow this statement
      !  for any height > 1 km. Add the maximum weighted wind excess back    
      !  to the surface wind. [gust = vsfc + max (f(z)*(v(k)-vsfc) ]
      !
      !  One primary difference between the calculation below and the others is
      !  that the individual components of the wind at each level are used rather
      !  then a simple calculation of the speed.
      !

      !$OMP PARALLEL DO   &
      !$OMP PRIVATE (i,j)

      DO j = jts,min(jte,jde-1)
      DO i = its,min(ite,ide-1)

         !  The following code is adapted from the RUC and appears to be similar
         !  to the simpler NAM/GFS calculation
         !
         gust10m(i,j) = 0.
         speed = sqrt(u10(i,j)**2 + v10(i,j)**2)

         IF (kpbl(i,j) .gt. 1) THEN

            DO k=kpbl(i,j),1,-1

               zagl = 0.50*(z2(i,k+1,j)+z2(i,k,j)) - ht(i,j)  ! Z at mid point
               wght = max (0.5,(1-(zagl/2000.)))

               u0    = wght * (u2(i,k,j)-u10(i,j))
               v0    = wght * (v2(i,k,j)-v10(i,j))

               uu    = u0+u10(i,j)
               vv    = v0+v10(i,j)

               speed = max (speed,sqrt(uu*uu+vv*vv))

            END DO

            k    = kpbl(i,j)
            wght = 1.0 - min(0.5,pblh(i,j)/2000.)

            u0   = u10(i,j) + wght*(u2(i,k,j)-u10(i,j))
            v0   = v10(i,j) + wght*(v2(i,k,j)-v10(i,j))

            speed = sqrt(u10(i,j)**2 + v10(i,j)**2)
            speed = max (speed,sqrt(u0*u0+v0*v0))

         END IF

         gust10m(i,j) = speed
         g10_max(i,j) = max (g10_max(i,j),speed)

      END DO
      END DO

      !$OMP END PARALLEL DO




FORTRAN CODE 2:

SUBROUTINE CALGUST(LPBL,ZPBL,GUST)
C$$$ SUBPROGRAM DOCUMENTATION BLOCK
C . . .
C SUBPROGRAM: CALGUST COMPUTE MAX WIND LEVEL
C PRGRMMR: MANIKIN ORG: W/NP2 DATE: 97-03-04
C
C ABSTRACT:
C THIS ROUTINE COMPUTES SURFACE WIND GUST BY MIXING
C DOWN MOMENTUM FROM THE LEVEL AT THE HEIGHT OF THE PBL
C
C
C PROGRAM HISTORY LOG:
C 03-10-15 GEOFF MANIKIN
C 05-03-09 H CHUANG - WRF VERSION
C 05-06-30 R ROZUMALSKI - DYNAMIC MEMORY ALLOCATION AND SMP
C THREAD-SAFE VERSION
C
C USAGE: CALL CALGUST(GUST)
C INPUT ARGUMENT LIST:
C NONE
C
C OUTPUT ARGUMENT LIST:
C GUST - SPEED OF THE MAXIMUM SFC WIND GUST
C
C OUTPUT FILES:
C NONE
C
C SUBPROGRAMS CALLED:
C UTILITIES:
C H2V
C
C LIBRARY:
C COMMON -
C LOOPS
C OPTIONS
C MASKS
C INDX
C
C ATTRIBUTES:
C LANGUAGE: FORTRAN 90
C MACHINE : CRAY C-90
C$$$
C
C
use vrbls3d
use vrbls2d
C
C INCLUDE ETA GRID DIMENSIONS. SET/DERIVE PARAMETERS.
C
!
INCLUDE "params"
C
INCLUDE "CTLBLK.comm"
C
C DECLARE VARIABLES.
C
INTEGER :: LPBL(IM,JM)
REAL :: GUST(IM,JM)
REAL ZPBL(IM,jsta_2l:jend_2u)
C
C
C*****************************************************************************
C START CALMXW HERE.
C
C LOOP OVER THE GRID.
C
DO J=JSTA,JEND
DO I=1,IM
! GUST(I,J) = SPVAL
GUST(I,J) = 0.
ENDDO
ENDDO
C
C ASSUME THAT U AND V HAVE UPDATED HALOS
C
!$omp parallel do
!$omp& private(ie,iw,mxww,u0,v0,wind)
DO 20 J=JSTA_M,JEND_M
DO 20 I=2,IM-1
L=LPBL(I,J)
IF(MODELNAME .EQ. 'NMM')THEN
IE=I+MOD(J+1,2)
IW=I+MOD(J+1,2)-1

USFC=D25*(U10(I,J-1)+U10(IW,J)+
X U10(IE,J)+U10(I,J+1))
VSFC=D25*(V10(I,J-1)+V10(IW,J)+
X V10(IE,J)+V10(I,J+1))
SFCWIND=SQRT(USFC**2 + VSFC**2)
U0 = D25*(U(I,J-1,L)+U(IW,J,L)+
X U(IE,J,L)+U(I,J+1,L))
V0 = D25*(V(I,J-1,L)+V(IW,J,L)+
X V(IE,J,L)+V(I,J+1,L))
WIND=SQRT(U0**2 + V0**2)

ELSE IF(MODELNAME .EQ. 'NCAR')THEN
USFC=U10(I,J)
VSFC=V10(I,J)
SFCWIND=SQRT(USFC**2 + VSFC**2)
U0=U(I,J,L)
V0=V(I,J,L)
WIND=SQRT(U0**2 + V0**2)
END IF
DELWIND=WIND - SFCWIND
ZSFC=FIS(I,J)*GI
DELWIND=DELWIND*(1.0-AMIN1(0.5,ZPBL(I,J)/2000.))
GUST(I,J)=SFCWIND+DELWIND
10 CONTINUE
20 CONTINUE

C END OF ROUTINE.
C
RETURN
END

Leonardo Jiménez

unread,
Feb 26, 2024, 10:54:09 AM2/26/24
to Matias Ezequiel Suarez, Will H, wrfpython-talk, Marco Miani
It's always interesting to read your Python code.

El lunes, 26 de febrero de 2024, Matias Ezequiel Suarez <suarezm...@gmail.com> escribió:
Hello Will, here in Córdoba, Argentina, we are using the following parameterization to calculate wind gusts from WRF output:


<img src="

Matias Ezequiel Suarez

unread,
Feb 26, 2024, 11:22:09 AM2/26/24
to Leonardo Jiménez, Will H, wrfpython-talk, Marco Miani
These are the python lines that calculate the wind gust from a wrfout.

wrfout = Dataset('path/to/wrfout.nc')

frame = wrf.ALL_TIMES

wspd_wdir10 = wrf.getvar(wrfout, 'wspd_wdir10', timeidx=frame)
wspd_wdir = wrf.getvar(wrfout, 'wspd_wdir', timeidx=frame)
pblh = wrf.getvar(wrfout, 'PBLH', timeidx=frame)
height = wrf.getvar(wrfout, 'height_agl', timeidx=frame)
u10 = wrf.getvar(wrfout, 'U10', timeidx=frame)
v10 = wrf.getvar(wrfout, 'V10', timeidx=frame)
wrfout.close()

wspd_pblh = wrf.interplevel(wspd_wdir, height, pblh)                                               # 1.
g_pblh = np.where(pblh <= 1000, pblh, 1000)                                                          # 2. 
G = (wspd_wdir10[0] + (wspd_pblh[0] - wspd_wdir10[0])*(1-(g_pblh/2000)))*3.6    # 3. gust in km/h


I have attached the complete script to this email.

_________________________________________________
image.png

Matías

generar_rafagas.py

Ian Dragaud

unread,
Feb 27, 2024, 4:03:56 AM2/27/24
to wrfpython-talk
Hi,
Adding the diagnostic max wind variable to the WRF model output is an interesting option.
It was also proposed here: https://forum.mmm.ucar.edu/threads/gust_wind-implementation.9917/

The WRF model User’s Guides details how to use it. Look for output_diagnostics.

Best,
Ian

--
You received this message because you are subscribed to the Google Groups "wrfpython-talk" group.
To unsubscribe from this group and stop receiving emails from it, send an email to wrfpython-tal...@ucar.edu.

Will H

unread,
Feb 27, 2024, 7:13:46 AM2/27/24
to wrfpython-talk, Marco Miani, Matias Ezequiel Suarez, leonardoj...@gmail.com, Ian Dragaud
First of all a bit thank you to Matias for figuring this out ahead of time.  I have been trying to get this to work for months now and I see where my mistake was made.

I have this issue raised in the wrf forum

https://forum.mmm.ucar.edu/threads/found-this-burried-deep-in-the-forum-did-wrf-arw-ever-get-the-gust-calculation.15331/

If everyone can show their support for it then perhaps it will get implemented?  Add some comments about why this is important to you and how you would use the gust values in WRF perhaps?

Will H

unread,
Feb 27, 2024, 7:56:45 AM2/27/24
to wrfpython-talk, Will H, Marco Miani, suarezm...@gmail.com, leonardoj...@gmail.com, iandr...@lamma.ufrj.br
wrf_d01_slp_wind_ter_ft_20240226_22.png
wrf_d01_SLP_WIND_Gust.gif

Matias Ezequiel Suarez

unread,
Feb 27, 2024, 10:35:49 AM2/27/24
to Will H, wrfpython-talk, leonardoj...@gmail.com, Marco Miani
Hello Will, here in Córdoba, Argentina, we are using the following parameterization to calculate wind gusts from WRF output:




If you are interested, I can share the Python lines to perform this calculation.



Will H

unread,
Feb 28, 2024, 12:07:17 PM2/28/24
to wrfpython-talk, Will H, Marco Miani, suarezm...@gmail.com, leonardoj...@gmail.com, iandr...@lamma.ufrj.br

Will H

unread,
Jul 25, 2024, 7:58:56 AM7/25/24
to wrfpython-talk, Will H, Marco Miani, suarezm...@gmail.com, leonardoj...@gmail.com, iandr...@lamma.ufrj.br, Gabriel Cassol
Has anyone done this in GrADS?

Will H

unread,
Nov 8, 2024, 5:58:59 AM11/8/24
to wrfpython-talk, Will H, Marco Miani, suarezm...@gmail.com, leonardoj...@gmail.com, iandr...@lamma.ufrj.br, gabriel...@gmail.com

I made an error here's the source material and the new code.

Code:
SUBROUTINE CALGUST(LPBL,ZPBL,GUST) C$$$ SUBPROGRAM DOCUMENTATION BLOCK C . . . C SUBPROGRAM: CALGUST COMPUTE MAX WIND LEVEL C PRGRMMR: MANIKIN ORG: W/NP2 DATE: 97-03-04 C C ABSTRACT: C THIS ROUTINE COMPUTES SURFACE WIND GUST BY MIXING C DOWN MOMENTUM FROM THE LEVEL AT THE HEIGHT OF THE PBL C C C PROGRAM HISTORY LOG: C 03-10-15 GEOFF MANIKIN C 05-03-09 H CHUANG - WRF VERSION C 05-06-30 R ROZUMALSKI - DYNAMIC MEMORY ALLOCATION AND SMP C THREAD-SAFE VERSION C C USAGE: CALL CALGUST(GUST) C INPUT ARGUMENT LIST: C NONE C C OUTPUT ARGUMENT LIST: C GUST - SPEED OF THE MAXIMUM SFC WIND GUST C C OUTPUT FILES: C NONE C C SUBPROGRAMS CALLED: C UTILITIES: C H2V C C LIBRARY: C COMMON - C LOOPS C OPTIONS C MASKS C INDX C C ATTRIBUTES: C LANGUAGE: FORTRAN 90 C MACHINE : CRAY C-90 C$$$ C C use vrbls3d use vrbls2d C C INCLUDE ETA GRID DIMENSIONS. SET/DERIVE PARAMETERS. C ! INCLUDE "params" C INCLUDE "CTLBLK.comm" C C DECLARE VARIABLES. C INTEGER :: LPBL(IM,JM) REAL :: GUST(IM,JM) REAL ZPBL(IM,jsta_2l:jend_2u) C C C***************************************************************************** C START CALMXW HERE. C C LOOP OVER THE GRID. C DO J=JSTA,JEND DO I=1,IM ! GUST(I,J) = SPVAL GUST(I,J) = 0. ENDDO ENDDO C C ASSUME THAT U AND V HAVE UPDATED HALOS C !$omp parallel do !$omp& private(ie,iw,mxww,u0,v0,wind) DO 20 J=JSTA_M,JEND_M DO 20 I=2,IM-1 L=LPBL(I,J) IF(MODELNAME .EQ. 'NMM')THEN IE=I+MOD(J+1,2) IW=I+MOD(J+1,2)-1 USFC=D25*(U10(I,J-1)+U10(IW,J)+ X U10(IE,J)+U10(I,J+1)) VSFC=D25*(V10(I,J-1)+V10(IW,J)+ X V10(IE,J)+V10(I,J+1)) SFCWIND=SQRT(USFC**2 + VSFC**2) U0 = D25*(U(I,J-1,L)+U(IW,J,L)+ X U(IE,J,L)+U(I,J+1,L)) V0 = D25*(V(I,J-1,L)+V(IW,J,L)+ X V(IE,J,L)+V(I,J+1,L)) WIND=SQRT(U0**2 + V0**2) ELSE IF(MODELNAME .EQ. 'NCAR')THEN USFC=U10(I,J) VSFC=V10(I,J) SFCWIND=SQRT(USFC**2 + VSFC**2) U0=U(I,J,L) V0=V(I,J,L) WIND=SQRT(U0**2 + V0**2) END IF DELWIND=WIND - SFCWIND ZSFC=FIS(I,J)*GI DELWIND=DELWIND*(1.0-AMIN1(0.5,ZPBL(I,J)/2000.)) GUST(I,J)=SFCWIND+DELWIND 10 CONTINUE 20 CONTINUE C END OF ROUTINE. C RETURN END

1731062878784.png


Key References​
  1. Benjamin, S. G., et al. (2004). An hourly assimilation–forecast cycle: The RUC. Monthly Weather Review, 132(2), 495–518.
    • This paper documents the structure and science behind the RUC model, including the methods for diagnosing surface wind gusts by mixing down PBL winds.
  2. Benjamin, S. G., et al. (2016). A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Monthly Weather Review, 144(4), 1669–1694.
    • This study describes the RAP model, which evolved from RUC, and includes refinements in diagnosing surface wind gusts using PBL heights and layer influences.
  3. Panofsky, H. A., & Dutton, J. A. (1984). Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley & Sons.
    • Provides background on turbulence and momentum transfer in the atmosphere, key concepts used in PBL wind gust parameterization.
  4. Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Springer.
    • This book explains boundary layer dynamics, including how wind speeds vary with height and can be used to estimate surface gusts based on the PBL.

Python:
# Calculate the 10-meter wind speed wspd_wdir10 = np.sqrt((u10**2) + (v10**2)) wspd_wdir = np.sqrt((u**2) + (v**2)) pblh = wrf.getvar(ncfile, 'PBLH', meta=True) height = wrf.getvar(ncfile, 'height_agl', meta=True, units="m") # Initialize the maximum gust speed array (same shape as surface wind speed) surface_gust_speed = np.zeros_like(wspd_wdir10) # Assuming wspd_wdir10 is the surface wind speed # Iterate over each vertical level for k in range(u.shape[0]): # Calculate the wind speed at level k wind_speed_k = np.sqrt(u[k]**2 + v[k]**2) height_k = np.minimum(height[k], 1000) # Cap height at 1000 meters # Calculate the weight based on capped height weight_k = (1 - (height_k / 2000)) # For heights > 1000m, weight_k will be 0.5 # Adjust the wind speed by the weighted difference from the surface surface_gust_speed = wspd_wdir10 + ((wind_speed_k - wspd_wdir10) * weight_k) # Apply Gaussian smoothing and convert to mph gusts = gaussian_filter(surface_gust_speed * 2.23694, sigma=1) # Convert m/s to mph

Will H

unread,
Nov 8, 2024, 10:20:33 AM11/8/24
to wrfpython-talk, Will H, Marco Miani, suarezm...@gmail.com, leonardoj...@gmail.com, iandr...@lamma.ufrj.br, gabriel...@gmail.com

Python:
    # Load the dataset
    ncfile = Dataset(ncfile_path)

    # Extract atmospheric variables
    # Fetch sea level pressure data from the netCDF file, which may be used in other analyses or conditions
    slp = wrf.getvar(ncfile, "slp", meta=True)  

    # Fetch the 10-meter wind components (U10 for x-direction, V10 for y-direction)
    # These represent the horizontal wind speeds at 10 meters above ground level
    u10 = wrf.getvar(ncfile, "U10", meta=True)
    v10 = wrf.getvar(ncfile, "V10", meta=True)

    # Fetch the upper-level wind components (ua for x-direction, va for y-direction) at multiple vertical levels
    # These represent the horizontal wind speeds at various heights in the atmosphere
    u = wrf.getvar(ncfile, "ua", meta=True, units="m s-1")
    v = wrf.getvar(ncfile, "va", meta=True, units="m s-1")

    # Convert 10-meter wind components from meters per second to knots
    # This is done by multiplying by the conversion factor 1.94384449
    u10_knots = u10 * 1.94384449
    v10_knots = v10 * 1.94384449

    # Calculate the total 10-meter wind speed by combining u10 and v10 components using the Pythagorean theorem

    wspd_wdir10 = np.sqrt((u10**2) + (v10**2))
   
    # Calculate the wind speed at higher levels by combining the u and v components for each level

    wspd_wdir = np.sqrt((u**2) + (v**2))

    # Retrieve the planetary boundary layer height (PBLH) from the netCDF file
    # PBLH represents the top height of the atmospheric boundary layer

    pblh = wrf.getvar(ncfile, 'PBLH', meta=True)

    # Retrieve the height above ground level at different atmospheric levels
    # This provides information on the altitude of each vertical level

    height = wrf.getvar(ncfile, 'height_agl', meta=True, units="m")

    # Calculate the wind speed at the top of the planetary boundary layer or 1000m, whichever is lower
    # This corresponds to vPBL in the wind gust parameterization formula, using interpolation
    # According to RUC20, the capped height should be 1000m for heights above 1000m [20:20†source]
    capped_pblh = np.minimum(pblh, 1000)
    wspd_pblh = wrf.interplevel(wspd_wdir, height, capped_pblh)

    # Cap the height at the minimum of either the planetary boundary layer height (PBLH) or 1000 meters
    # According to the RUC20 parameterization used by NOAA, the capped height should be 1000m for heights above 1000m [20:20†source]
    height_k = np.minimum(pblh, 1000)

    # Calculate the weight based on the capped height
    # This weight decreases linearly with height, reducing the influence of wind at higher levels
    weight_k = (1 - (height_k / 2000))  # For heights ≥1000m, weight_k becomes 0.5 [20:20†source]

    # Adjust the surface gust speed based on the parameterization formula
    # This combines the surface wind speed (10-meter level) with the weighted difference between
    # the wind speed at the top of the PBL and the surface wind speed
    surface_gust_speed = wspd_wdir10 + ((wspd_pblh - wspd_wdir10) * weight_k)

    # Apply Gaussian smoothing to the resulting gust speed field to smooth out abrupt changes in gust speed values
    # Convert the smoothed gust speeds from meters per second to miles per hour by multiplying by 2.23694

    gusts = gaussian_filter(surface_gust_speed * 2.23694, sigma=1)  # Convert m/s to mph

    # This code is based on the RUC20 (Rapid Update Cycle) model's wind gust parameterization, which calculates
    # gusts as a function of the 10-meter wind speed and the wind at the top of the planetary boundary layer.
    # Reference: Vindel et al. (2020), Eq. (6), which uses the form W_G = v10 + (vPBL - v10) * (1 - hPBL/2000) [20:20†source].

Will H

unread,
Nov 21, 2024, 6:12:21 AM11/21/24
to wrfpython-talk, Will H, Marco Miani, suarezm...@gmail.com, leonardoj...@gmail.com, iandr...@lamma.ufrj.br, gabriel...@gmail.com
solve the problem with help from someone on my linkedin

If pblh < surface wind then it gives a nan.  So I had to adjust the script for nan calculations

Reply all
Reply to author
Forward
0 new messages