import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import scipy
import numpy as np
import cv2
tf.compat.v1.enable_eager_execution()
def generate_data_set():
l = []
for i in range(50):
l.append([i,i+2,i+4])
return np.asarray(l ,dtype = np.single )
m = generate_data_set()
#print(m)
model = keras.Sequential(
[
layers.Dense(9,activation = "relu" , name ="encode_1"),
layers.Dense(5,activation = "relu" , name ="encode_2"),
layers.Dense(1,activation = "relu" , name ="shorty"),
layers.Dense(5,activation = "relu" , name = "decode_2"),
layers.Dense(9,activation = "relu" , name = "decode_1"),
layers.Dense(3,name = "out"),
]
)
x = tf.ones((3,3))
y = model(x)
print(y.numpy())