
MUHAMMAD UMER YAQOOB

1 | P a g e

Self-diffusivity coefficient calculations

Self-diffusivity is the ability of a molecule to move through a fluid by its own motion, and is commonly

expressed as a diffusion coefficient (D). The diffusion coefficient represents the proportionality constant

between the flux of a molecule and its concentration gradient, and has units of square meters per

second (m^2/s) in the International System of Units (SI).

The calculation of the self-diffusivity coefficient for a given system can be performed using different

methods, including experimental techniques and molecular simulations. Here, we will describe the

calculation of the self-diffusivity coefficient using molecular dynamics simulations.

The steps to calculate the self-diffusivity coefficient are as follows:

1. Choose a molecular dynamics simulation package, such as GROMACS, LAMMPS, or NAMD.

2. Prepare the system of interest, including the solute molecule(s) and the solvent (or mixture of

solvents) in which it is dissolved. The system should be equilibrated at the desired temperature

and pressure.

3. Set up a simulation box with periodic boundary conditions (PBC), which allows for an infinite

number of system replicas. The PBC ensures that the solute molecule(s) can move freely in all

directions without encountering a hard boundary.

4. Choose an appropriate ensemble for the simulation, such as the NVT (constant number of

particles, volume, and temperature) or NPT (constant number of particles, pressure, and

temperature) ensembles. The choice of ensemble depends on the specific system and the

questions being asked.

5. Run a production simulation for a sufficient length of time to obtain statistically meaningful

results. The simulation time required depends on the size and complexity of the system, as well

as the desired level of precision.

6. Analyze the trajectory data using appropriate tools, such as the MSD (mean squared

displacement) analysis. MSD measures the average displacement of a molecule over a given

time interval, and can be used to calculate the self-diffusivity coefficient using the Einstein

relation:

7. D = lim(t->inf) MSD/(6t)

MUHAMMAD UMER YAQOOB

2 | P a g e

where t is the time interval and the limit t->inf is taken to ensure that the diffusion coefficient converges

to a constant value.

8. Calculate the error in the diffusion coefficient using standard statistical techniques, such as the

standard error of the mean or the bootstrap method.

9. Repeat the simulation and analysis for multiple replicates to ensure reproducibility and

reliability of the results.

10. Overall, the calculation of the self-diffusivity coefficient requires careful preparation of the

system, appropriate choice of simulation parameters, and rigorous statistical analysis of the

trajectory data

The self-diffusivity coefficient is a measure of the rate at which particles diffuse through a medium. It is

calculated using the mean squared displacement (MSD) of the particles over time.

CODE

Here is a Python function that takes in a list of particle positions over time and calculates the self-

diffusivity coefficient:

import numpy as np

def calculate_self_diffusivity(positions, dt):

 """

 Calculate the self-diffusivity coefficient of particles given their positions over time.

 Args:

 positions: numpy array of shape (N, M, d) where N is the number of particles, M is the number of

time steps, and d is the dimensionality of the system

 dt: float, the time step between each position measurement

 Returns:

 diffusivity: float, the self-diffusivity coefficient

 """

 displacements = positions - positions[:,0,:][:,np.newaxis,:]

 squared_displacements = np.sum(displacements**2, axis=2)

 msd = np.mean(squared_displacements, axis=0)

 diffusivity = np.mean(msd)/(2*dt)

MUHAMMAD UMER YAQOOB

3 | P a g e

 return diffusivity

Here's an example of how to use this function:

Generate some random particle positions over time

num_particles = 100

num_timesteps = 1000

positions = np.random.rand(num_particles, num_timesteps, 3)

Calculate the self-diffusivity coefficient

dt = 0.01

diffusivity = calculate_self_diffusivity(positions, dt)

print(f"Self-diffusivity coefficient: {diffusivity}")

Conductivity calculations with Nernst-Einstein method

Conductivity is a measure of the ability of a material to conduct electrical current and is an important

property in many fields, including materials science and electrochemistry. Two common methods for

calculating conductivity are the Nernst-Einstein and Green-Kubo methods.

Nernst-Einstein method:

The Nernst-Einstein equation relates the ionic conductivity of a material to the diffusion coefficient of

the ions and their charge:

σ = qDc

where σ is the ionic conductivity, q is the charge of the ions, D is the diffusion coefficient, and c is the

concentration of the ions.

The diffusion coefficient can be calculated using molecular dynamics (MD) simulations by analyzing the

mean squared displacement (MSD) of the ions over time. Specifically, the diffusion coefficient can be

obtained from the slope of the linear region of the MSD plot:

MUHAMMAD UMER YAQOOB

4 | P a g e

MSD(t) = 6D*t

where MSD is the mean squared displacement and t is time.

To calculate the conductivity using the Nernst-Einstein equation, we need to obtain the diffusion

coefficient and the concentration of the ions in the material of interest. The concentration can be

calculated from the density of the material and the molecular weight of the ions. Once we have both

values, we can use the Nernst-Einstein equation to obtain the ionic conductivity of the material.

Green-Kubo method:

The Green-Kubo method is a simulation-based approach that uses the fluctuation-dissipation theorem

to relate the conductivity to the time correlation function of the current density. The current density is

defined as the product of the charge and the velocity of the ions. The conductivity can be obtained from

the time integral of the current-density correlation function:

σ = lim(t->inf) (1/3VkBT) ∫_0^t J(t')*J(0) dt'

where V is the volume of the simulation box, kB is the Boltzmann constant, T is the temperature, and J is

the current density.

To calculate the current-density correlation function, we need to perform an MD simulation and

monitor the current density at regular intervals. The correlation function can then be obtained by

computing the time-averaged product of the current density at two different times. The integral can be

numerically evaluated using standard techniques, such as the trapezoidal rule or Simpson's rule.

The Green-Kubo method provides a more accurate estimate of the conductivity than the Nernst-Einstein

method, but is computationally more expensive as it requires longer simulation times to achieve

convergence.

In summary, the Nernst-Einstein and Green-Kubo methods are two commonly used approaches for

calculating conductivity in materials. The Nernst-Einstein method is simpler but assumes that the ions

MUHAMMAD UMER YAQOOB

5 | P a g e

are undergoing Brownian motion, while the Green-Kubo method is more accurate but requires longer

simulation times.

CODE

The Nernst-Einstein method is a method for calculating the conductivity of a system of charged

particles. It assumes that the charged particles are in thermal equilibrium with their surroundings and

that their motion is governed by diffusion.

Here is a Python function that takes in a list of particle positions and charges over time and calculates

the conductivity using the Nernst-Einstein method:

def calculate_conductivity_nernst_einstein(positions, charges, dt, temperature, box_size):

 """

 Calculate the conductivity of charged particles using the Nernst-Einstein method.

 Args:

 positions: numpy array of shape (N, M, d) where N is the number of particles, M is the number of

time steps, and d is the dimensionality of the system

 charges: numpy array of shape (N,) containing the charges of each particle

 dt: float, the time step between each position measurement

 temperature: float, the temperature of the system

 box_size: float, the size of the simulation box

 Returns:

 conductivity: float, the conductivity of the system

 """

 diffusivity = calculate_self_diffusivity(positions, dt)

 mobility = diffusivity/(temperature*1.38e-23)

 conductivity = np.sum(charges**2)*mobility/box_size

 return conductivity

Here's an example of how to use this function:

Generate some random particle positions and charges over time

MUHAMMAD UMER YAQOOB

6 | P a g e

num_particles = 100

num_timesteps = 1000

positions = np.random.rand(num_particles, num_timesteps, 3)

charges = np.random.choice([-1, 1], size=num_particles)

Calculate the conductivity

dt = 0.01

temperature = 298

