
https://skvare.com

Members of the Libertarian Party,

I am excited to present the evaluation of our CiviCRM platform from CiviCRM experts, Skvare, to the

membership. The report outlines specific technical recommendations as well as analysis on CiviCRM’s role in the Party

ecosystem. I wanted to provide a breakdown of the technical recommendations for laymen and outline next steps we

are taking based on these recommendations to increase fundraising, empower our state affiliates, and address technical

debt.

Technical Debt and Recommendations

 Technical debt “describes the consequences of software development actions that intentionally or

unintentionally prioritize client value and/or project constraints such as delivery deadlines, over more technical

implementation, and design considerations.” In English, what this means is that businesses frequently find themselves in

positions where daily activities are hampered because the maintenance of tools that worked for years have not been

prioritized. In the worst cases, businesses are forced to scale back revenue-generating operations to address these

systemic technology issues to avoid being completely unable to function.

 Skvare points out in their report that while their assessment of our CiviCRM system is “generally positive,” they

warn that there are no “silver bullet” solutions. This is because the Libertarian Party finds itself in a classic case of owing

technical debt. We operate on a 2-year party leadership cycle within a 4-year election cycle, which incentivizes the Party

to operate more like a publicly traded company that must meet quarterly goals to please shareholders than a nonprofit

that is building an organization to accomplish a goal. For many years, the party has chosen short term efforts over long

term technological health. This is rational behavior given the incentive structure and limited resources of the party, but

we must be able to understand how we got to this position if we hope to navigate out of it. Skvare says “in our work

with similar organizations, we’ve consistently seen that too little focus on ongoing development leads to increases in

other areas: more support and training issues, more administration and maintenance work, and just generally more staff

time spent fielding complaints from dissatisfied users.” We must adopt a focus on continuous development so that our

staff and volunteers can get back to the productive activities that make the party function. Skvare has laid out issues and

solutions on which to focus this development effort to get us back to a fully operational level as quickly as possible:

1. Permissions

a. There is no unified permission model in our CiviCRM system. The Party needs to enable national, state,

and local users to securely access the information they need at their level of engagement. The report

finds that our permission model is overly complex. Skvare states that “they have never seen so many

Civirules in one site” to manage permissions. The permission model inhibits quick and secure user access

and is far too restrictive for state affiliates. Skvare has provided a set of action items to simplify our

permission model which will empower states as well as have an impact on website speed due to the

current permission model being very resource intensive.

2. CiviCRM component configuration

a. CiviCRM relies on several components to function, such as a web server platform and a database. These

components are separate from CiviCRM and have their own configurations that must be managed.

Skvare has reported that many of these component settings are not optimal and has provided a list of

recommended configurations. Fixing these settings can lead to substantial gains in the speed of the

website.

3. Documentation:

a. In an organization like the Libertarian Party, extremely strong documentation is needed to ensure

disparate and decentralized users can effectively use the system. CRMs are inherently complicated and

often unintuitive pieces of software; without good documentation we must rely on user-to-user training.

Evan McMahon in Indiana has been Herculean in his efforts to train as many people as possible on

CiviCRM and I cannot thank him enough, but Skvare has highlighted that our current documentation is

not sustainable. They have provided top priority processes to document and recommended ways to

store the documentation so that it is secure, but accessible to as many users as possible.

4. Use Case

a. Our CiviCRM system was initially implemented by a group of technical party members who frequently

had to push big features without planning or direction to convince state boards to join the network and

prevent prior LNC boards from canceling the project. There was not time in the initial development to

carefully consider how to best serve the ecosystem. Skvare points out that while CiviCRM is “is an

effective solution” for meeting the party’s ongoing needs, it is a trap to try to “be all things to all

people,” and careful planning must be used. For instance, it is not possible to accurately query our

membership numbers natively in CiviCRM because of the way reporting works. CiviCRM also natively

lacks many critical fundraising tools that our staff and volunteers experience using to successfully

produce growth in other roles. Custom work could be done to make these features available in CiviCRM,

but Skvare recommends that we carefully decide what it is important to have available in CiviCRM itself

and what makes sense to integrate into another tool. They have provided detailed processes to help us

make these determinations so that we can address our most immediate CiviCRM pain points, such as

fundraising.

5. Hardware

a. One area that we have little to no technical debt in is our actual hardware infrastructure. This is in large

part due to the efforts of Ken Moellman who has worked tirelessly over the years to keep our hardware

configuration in alignment with industry standards.

Next Steps

1) The clearest throughline of the report is that it is going to take a substantial amount of time and resources to get

CiviCRM to a place where it is effectively powering our organization. Given the Party’s current fundraising woes, time is a

luxury we do not have. As such, we have identified new fundraising tools, to address short-term fundraising needs:

WooCommerce and Anedot have modern web features and checkout UX capabilities that will allow our staff to

circumvent many Civi Contribution Page constraints, iWave will allow us to leverage screening small batches of major

donors, our new database visualizer will allow us to accurately analyze and segment our data, and new

MailChimp/Drip/SMS tools will allow us actually email those segments, overcoming native Civi constraints to email and

text useful donor segments. By implementing these, we will be much better positioned to engage lapsed members, run

effective campaigns to generate new leads, and convert those new leads into active donors. This is the exact type of

decision that generates further technical debt, but you will see in the steps below that we have a plan to continuously

support and improve our software suite to address all our technical debt in an effective manner.

2) As time is a precious commodity, we must implement the outlined technical recommendations as quickly as possible.

We will achieve this by engaging Skvare to help implement these recommendations. Given their expertise, Skvare can

much more rapidly implement the fixes and tweaks needed to remedy the areas that are slowing the rest of the

organization down.

3) Skvare stresses the importance of implementing a requirements gathering process that collates the needs of the

entire organization and makes determinations about what tool should perform which function. We have spoken about

and begun this requirements gathering process. Let me detail those steps here:

1. Identify the Stakeholders

Identify the key individuals from the national, state, and county party fundraisers, activists, and leaders who will be

using the CRM platform most frequently. They will be the primary users, and their needs and concerns should be taken

into consideration first.

2. Stakeholder Interviews

Organize individual or group interviews with the identified stakeholders to understand their needs, pain points, and

what they expect from a CRM platform.

Users: Focus on understanding their day-to-day operations, what kind of data they deal with, what kind of data they

need, the tasks they perform that could be simplified or automated, and the reports they usually generate, understand

their fundraising strategies, their interactions with donors, their reporting needs, and any challenges they face in regards

to fundraising that could be addressed by the CRM

Non-user leaders: Their concerns may be more strategic. We will try to understand their long-term goals for the party,

what kind of metrics they are interested in, and how the CRM can assist in making informed decisions.

3. Stakeholder Surveys

Supplement interviews with surveys to gather additional data and reach stakeholders who might not be available for

interviews. These surveys should aim to quantify the needs identified in the interviews, establish the priority of various

features, and identify any additional needs not covered in the interviews.

4. User Stories and Use Case Development

Based on the information gathered from interviews and surveys, we will create user stories and use cases. These will

help in detailing the specific needs of users, how they interact with the system, and what the system should provide in

return, as well as help lay out a roadmap of when and what order things can be done.

5. Consolidation and Prioritization

Consolidate all the gathered information and prioritize the requirements based on the needs and strategic goals of the

party. It is likely that we will have more requirements than we can address at once, so it is crucial to determine which

requirements are most important.

6. Validation Workshops

Conduct validation workshops where we present the prioritized list of requirements to the stakeholders. The goal is to

validate that we correctly understood their needs and that they agree with the priorities we set.

7. Documentation and Communication

Finally, document all the requirements in a formal requirements specification document and share it with all the

stakeholders. Ensure that everyone is on the same page regarding the requirements for the CRM platform.

It is important to remember that requirement gathering is an iterative process. As we go through this process, new

needs may emerge, and priorities may change. We will stay flexible and keep communication lines open with all

stakeholders.

4) As I am sure many of you who have interacted with us can tell, our small tech team spends almost all its limited time

fighting fires to simply keep CiviCRM online. To address this, we are going to expand our technical team to enable

continuous development. We are hiring additional technical staff with expertise in administering and improving large

systems will allow us to focus on continuous development, so that new features enabling better fundraising and more

effective political activism for both the national party and our state affiliates are delivered on a consistent and

predictable basis as well as continuing to expand and harness volunteer talent. This steady flow of new features being

defined by and evaluated against the needs of our users will allow us to continue to level up and scale our efforts

instead of having to keep trying to squeeze more toothpaste out of the same tubes the party has been using for years.

Long Term

 Implementing these steps will make huge strides in our staff’s ability to leverage their talents and return the

party to a healthy position. To fully capture the gains of these strides and avoid reverting to the mean, we must have a

vision of what an excellent CRM would look like for our ecosystem. As I mentioned, the specific features and user

experience will be determined as a whole movement via a broad requirements gathering process. I would like to lay out

some core principles we should all keep in mind that, if successfully implemented, would take us from an organization

that has historically struggled with technology to a leader in political tech:

• Simple user experience and easy to train users

• Designed specifically around leaders, organizers, and end users working to grow the party and make a political

impact

• Private, secure, cancel-proof

• Open source

• Easily deployable and maintainable by states on their own infrastructure with maintained set-up documentation

• Accurate Reports available in the tool

• Documentation available in the tool

• Native two-way data flow between national and states that can be managed by either side

• API available to states to get contact/contribution/event data in/out of the system so they aren't forced to use

our solution

• Highly performant (aka fast)

• Clear geographic and functional Role Based Access that is maintained by states but used to determine national

data access

o This means we have a small number of roles that could assigned to someone without compromising the

segregation of permissions.

• Easy to access development environment

• Robust Continuous Integration/Continuous Delivery process

• Automated patching

• FEC compliant

• Can take payment natively in cryptocurrency

• Active data sanitation

In closing, I would like to particularly thank John Fetsko, Jay Norton, and the members of the IS Committee. They have

worked at all hours of the day to fix outages and navigate our technological landscape. I also would like to thank Lainie

Huston, Drew Hreha, Matt Hudson, and David Aitken on staff. They have poured endless dedication and creativity into

running as effective of fundraisers as is currently possible within our constraints. I cannot wait to see what they

accomplish with these new tools and improvements. I hope this breakdown has given you a thorough understanding of

Skvare’s technical recommendations and our plan to address technical needs. I am excited to work with you all as we

make our CRM platform the best it can possibly be to help us achieve liberty outcomes.

Andy Buchkovich

Chief Technical Officer

CiviCRM & Infrastructure Assessment Report

Prepared for the Libertarian Party

May 17, 2023

Submitted by Skvare, LLC

Helping Others Help Others

Table of Contents

Goals of this Assessment
Assessment Overview
Planning & Strategy
Future Planning
Strategic Prioritization
Balancing Features & Friendliness
Summary of Technology Platform Priorities
Strategic Selection of Features
Special Considerations
Strategic Feature Analysis: Part 1
Strategic Feature Analysis: Part 2
Strategy and Planning: Summary
Technical Recommendations: Server and Infrastructure
Apache Web Server
PHP
MySQL
Structure
Technical Recommendations: General
Internal CiviCRM search and reporting
End User Support and Documentation
Simplify and Streamline Technical Tools
Create a Reference Instance
Create Developer Documentation
Remove Unnecessary Add-Ons
Convert CiviRules to Custom Code
Optimize Smart Groups and ACLs
Cache
Technical Recommendations: User Permissions
Conceptual Overview: User Permissions, Multisite and ACLs
WordPress and CiviCRM Multisite
Additional Permissions Features and Settings
WordPress User Roles via User Role Editor
CiviCRM: WordPress Access Control
CiviCRM ACLs
CiviCRM Groups
WordPress Groups and Related Plugins
CiviCRM Extension: Contact Summary Editor
CiviCRM Extension: Custom CiviCRM Permissions
CiviCRM Custom Extensions

Goals of this Assessment
Skvare is providing the national Libertarian Party with this external third-party evaluation to meet
two primary objectives:

1. Evaluation of the current system’s multi-site infrastructure, including hosting configuration
and code, in order to recommend and prioritize areas for improvement.

2. Evaluate the effectiveness of CiviCRM as a product for meeting the party’s current and
ongoing needs.

To meet these objectives, Skvare has provided the following services:

1. System performance: users continue to find that WordPress and CiviCRM are slow, with
basic searches in CiviCRM requiring 5 to 10 seconds to complete. Skvare’s DevOps team has
reviewed server and infrastructure configuration and is sharing recommendations for
improving performance.

2. Multi-site configuration: the WordPress+CiviCRM system uses a complex multi-site
configuration to support separate affiliate websites and control access to the contact/donor
database. Skvare has reviewed existing documentation and evaluated the current
configuration. We have provided a summary of our findings below.

3. User access review: Skvare has reviewed roles and permissions in the WordPress/CiviCRM
system. We are providing a summary of findings and a recommended outline for
identifying, prioritizing, defining and implementing potential improvements

4. Documentation: The party reports that there is a lack of internal documentation. We have
assessed the party’s documentation needs and are providing recommendations for
improvements.

Assessment Overview

Skvare’s technical assessment of the platform is generally positive.

Our review of the server and infrastructure found no significant issues. We have provided a set of
recommendations which may improve performance (see Technical Assessment and
Recommendations: Performance section below). It is both good and bad news that we found no
“silver bullet” solutions that we expect will dramatically improve speed and performance.

In this evaluation of the effectiveness of CiviCRM as a product for meeting the party’s current and
ongoing needs, our preliminary finding is that CiviCRM is indeed an effective solution. A more
thorough internal evaluation process is outlined in the Strategy section of this report.

Our review of system configuration found a few idiosyncrasies and areas for improvement, detailed
later in this report. We’re recommending a process of cleanup and simplification, particularly
around users and permissions. There are some notable improvements that can be made without
changing existing functionality – that is, the system can be made to do what it does now, but

quicker. Most potential improvements will need further analysis. Some would definitely change
system behavior, which we anticipate would be weighed against the benefits of that change.

Planning and Strategy
During this engagement, we identified several potentially significant improvements in the
organization’s planning and strategy around its technical offerings. This section explains those
findings.

Future Planning

As a software provider, the Libertarian Party should expect that development will be continuous
and ongoing. Our understanding is that the organization sees the “development phase” of its
WordPress+CiviCRM system as nearing an end. We strongly recommend the organization affirm
and normalize the expectation that, as long as it provides software to its affiliates, the
development phase will never truly end.

The Libertarian Party has asked Skvare to review some key areas for immediate improvements.
(See Goals of this Assessment at the top of this report.) When these improvements are
completed, others will immediately rise to the forefront. New bugs and bottlenecks will be
discovered. Users will demand new features as their affiliates’ business needs change.

In our work with similar organizations, we’ve consistently seen that too little focus on ongoing
development leads to increases in other areas: more support and training issues, more
administration and maintenance work, and just generally more staff time spent fielding
complaints from dissatisfied users.

Skvare’s recommendation: plan for and prioritize ongoing development throughout the
life of the system.

We realize this may seem like a predictable thing for a web development company to
say! This recommendation is entirely independent of any self-interest. We recommend
increasing the party’s technology staffing level by adding internal or external developers,
employees or volunteers. For CiviCRM improvements in the short term, a development
firm with CiviCRM experience is highly preferable.

Strategic Prioritization
Or, Avoiding the “Be All Things to All People” Trap

When a single organization adopts a piece of software, they decide what they need to use it for,
and then adjust the software to meet those needs. The Libertarian Party’s users are more diverse:
each individual user has their own needs, expectations, and skills; and then each affiliate has its
own organizational needs and priorities. It’s naturally challenging to make it easy for everyone
to do everything.

For the purposes of this assessment, the Libertarian Party has identified several priority
improvement areas:

1. System speed and performance (includes optimization of user permissions)
2. User-friendliness for both internal (national party) and external (affiliate) users
3. User access, specifically the need to grant more permissions to affiliate users

Items 2 and 3 are somewhat at odds with each other. Let’s consider:

Balancing Features & Friendliness

With technical systems, there’s a spectrum between simple and powerful:

Simple
● Very user-friendly
● Requires minimal training to get started
● Few features and limited options outside

a standard setup

Powerful
● Delivers complex functionality
● Highly configurable, with many options

and combinations of options
● Requires training to manage effectively

Of course, it is possible to build systems that are both user-friendly and powerful. We’ve all seen
websites that do a great job balancing the two. This is achieved with a high level of work across
many technical areas: strategy and planning, user engagement, development (typically across
multiple specialty areas), graphic design, UX (user experience) design, testing, and more.

To be frank: it is expensive.

Skvare’s recommendation: rather than aiming to build an ultra-high-end technology
platform, make a strategic decision to pursue either simple or powerful. Either approach
will require commitment and involve tough decisions. Here’s how each path might look:

Simple
● Remove all but the most essential features

and the most widely used options.
● Remove as many options as possible from

WordPress and CiviCRM menus.
● Replace complex WordPress / CiviCRM

features, such as Advanced Search/Search

Powerful
● Grant more permissions to affiliate users.

(For recommendations on doing this in an
organized fashion, see User Permissions
later in this document.)

● Prioritize training and detailed
documentation for affiliate users. Require

Kit, with simplified custom-built versions.
Engage outside expertise in UX/UI to design
the new versions.

● De-prioritize documentation for affiliate
users, focusing instead on intuitive usability
for people who don’t read the instructions.

● Conduct informal focus groups and
monitored UAT: watch real users navigate
the system to identify usability problems,
then resolve them.

affiliate users to participate in
comprehensive regular “refresher” trainings
so they can continue to use the system
correctly and efficiently.

● More users doing more things = higher error
rates and less data accuracy. Frequently
examine data to identify problems and
trends in problems. Build administrator
reports and back-end processes to detect
and clean up bad data.

● To the greatest extent possible, adopt a
hands-off approach to affiliate-generated
errors and inaccurate data.

Summary of Technology Platform Priorities
Skvare’s work on this assessment included eliciting the following set of technology priorities, in
order from most to least important:

1. Streamline the administration side of our current solutions
2. Deliver improved functionality for national party users and national fundraising purposes
3. Deliver easier and more user-friendly solutions for affiliate end users
4. Improve the power and performance of tech solutions
5. Add new features and/or expand solutions for affiliates
6. Grow our user base (not a priority)
7. Pare down: offer fewer / reduced solutions (not a priority)

The Libertarian Party reports that the most critical element of the system is data sharing between
national and affiliates.

Strategic Selection of Features
The Libertarian Party already has a technology platform, which already has a full set of features.
Why are we talking about “selection of features”?

The resources required for ongoing maintenance, development, and support are much higher for
a more complex system with a wider array of features. Every day that a feature is available on this
platform is a day that the organization has decided, even passively, to continue to offer that feature.

Skvare’s recommendation: the Libertarian Party’s board of directors, or a
subcommittee/task force it designates, should: perform a strategic review of the platform’s
features and the needs of its users, conduct a SWOT analysis for each feature, and
affirmatively decide which features will continue to be part of the system.

Will this process take some time? Yes! But so does providing ongoing administration,
development, training, and support. By going through this strategic planning process

now, the organization will ensure that its staff and resources are 100% focused on the
most essential features with the highest ROI for both national and affiliates.

For each feature, consider and answer questions such as:

● “What are our users’ needs in this area?”
● “How well does this feature meet everyone’s needs now?”
● “What other solutions exist which the national party and/or affiliates could use instead?”
● “How does our feature stack up against the alternatives?”
● “If we were to remove this feature from our system and adopt/recommend an alternative,

what would be involved in the transition process?”
● “What are the short-term and long-term consequences of maintaining this feature vs

discontinuing it?”

Special Considerations
It is not necessarily necessary for every feature to exist within a single unified platform. When
considering features separately, keep an open mind regarding which pieces could potentially be
split off from the whole.

It may be important to share data between, for example, a donor database and an event
registration system. While keeping an open mind about separate features, also consider where
data sharing is most important. Sharing data within a single system is easier than sharing it
between two separate systems.

Strategic Feature Analysis: Part 1
Parts of this matrix are pre-filled with information provided to Skvare by the Libertarian Party. This analysis should be completed
by the board or a board committee/task force. To complete: fill in all the blank boxes. Modify pre-filled content as needed.

Feature National Party IT Solution Advantages of National Solution Disadvantages

CRM: contact and donor
database, search,
reporting

CiviCRM Centralized data: donor and
donation data shared between
national and affiliates, and vice
versa.

Affiliates have limited control
over their own events,
donation forms and other
features.

Requires significant
maintenance, management,
training and support from
national staff.

CMS: chapter websites Wordpress with multisite:
supports separate websites for
each chapter, managed
through a single system

Marketing: email, SMS CiviCRM

Phone banking, walk lists CiviCRM

Online donations CiviCRM + payment processor

Survey tool CiviCRM

Event management CiviCRM + Wordpress with
custom development

Identity management Wordpress Out-of-the-box Wordpress is not designed to
perform this function. In
current state, no unified
identity management across
platforms—only managing

permissions and not
cohesively in a one-stop-shop
mechanism

Strategic Feature Analysis: Part 2
Parts of this matrix are pre-filled with information provided to Skvare by the Libertarian Party. This analysis should be completed
by the board or a board committee/task force. To complete: this matrix, Part 2 of the analysis, will almost certainly require more
space than this grid provides. You’re encouraged to break out each feature into its own SWOT analysis document. The grid on this
page is offered as a starting point.

Feature Major Alternatives Libertarian Party Solution vs
Alternatives: Pros & Cons

Conclusion
Continue or Discontinue as a
National Party Offering?

CRM: contact and donor
database, search, reporting

● NationBuilder
● Anedot

CMS: chapter websites ● Independent
Wordpress sites

● Squarespace
● Other major CMS

solutions

Marketing: email, SMS ● Anedot
● Mailchimp
● Constant Contact

Phone banking, walk lists ● eCanvasser

Online donations ● Stripe
● Paypal
● Donorbox
● Anedot

Survey tool ● Google Forms
● JotForm
● Mailchimp

Event management ● EventBrite
● Cvent

Identity management

Strategy and Planning: Summary
In this evaluation of the effectiveness of CiviCRM as a product for meeting the party’s
current and ongoing needs, our preliminary finding is that CiviCRM is indeed an
effective solution.

Critical to this question, however, is the question “what are the party’s current and
ongoing needs?” The preceding Strategy sections of this report are provided as
recommended processes for defining those needs and evaluating
WordPress+CiviCRM as a long-term solution. The proposed approach focuses
primarily on the affiliate side of the system, which is by far the more unique set of
requirements compared with the national CRM and donor database.

Technical Recommendations: Server and Infrastructure
Moving on from the strategic side of this assessment, Skvare has conducted a review
of the WordPress+CiviCRM system’s server and infrastructure.

Apache Web Server
The following performance-related settings currently use default values. Our
recommendation is to consider increasing these settings, which can yield
performance improvements. Note that setting any of these too high may lead to
resource exhaustion.

● MaxClients: controls maximum simultaneous connections that Apache will
allow.

● Enable KeepAlive (done); adjust KeepAlive timeout and
MaxKeepAliveRequests. Allows multiple requests to be sent over a single TCP
connection; sets the maximum number of requests that can be sent over a
single TCP connection when KeepAlive is enabled.

● Timeout: sets the amount of time that Apache will wait for a response from a
client before closing the connection.

● ServerLimit: sets the maximum number of worker processes that Apache will
create.

● ThreadLimit: sets the maximum number of worker threads per process.
● StartServers: sets the number of worker processes that Apache will start

initially.
● MinSpareThreads and MaxSpareThreads: minimum and maximum number of

idle worker threads that Apache will keep running.
● ListenBacklog: sets the maximum length of the queue of pending connections.

● Enable EnableMMAP and EnableSendfile: These variables control whether
Apache will use memory-mapped files and the sendfile() system call for
sending files, respectively. Enabling them can improve performance.

PHP
● Set opcache.enable to 1 to enable opcode caching for PHP files.
● Increase opcache.memory_consumption to 512MB to allow for more scripts to

be cached in memory.
● Set opcache.max_accelerated_files to a higher value, such as 10000, to cache

more PHP files.
● Increase memory_limit to a higher value, such as 8192M, to allow PHP scripts to

use more memory.
● Set max_execution_time to a higher value, such as 600, to allow PHP scripts to

run longer before timing out.
● Increase post_max_size to a higher value, such as 128M, to allow for larger file

uploads.
● Increase upload_max_filesize to a higher value, such as 128M, to allow for larger

file uploads.
● Set realpath_cache_size to a higher value, such as 4096K, to cache more file

paths in memory for faster file access.
● Set realpath_cache_ttl to a higher value, such as 86400, to cache file paths in

memory for longer periods of time.

MySQL
● innodb_buffer_pool_size: Consider increasing this value from its current setting

of 96GB to 120GB or higher to allow MySQL to use more memory for caching
data.

● innodb_log_file_size: This setting is already fairly large at 4GB, but increasing it
could improve write performance. However, it may also increase recovery time
in the event of a crash. Try 8GB or 16GB and monitor the impact on
performance.

● innodb_flush_log_at_trx_commit: This setting determines how often MySQL
writes transaction logs to disk. The default value of 1 provides maximum
durability, but it can also impact write performance. Try setting it to 2 or 0 to
see if it improves performance without sacrificing data integrity.

● tmp_table_size and max_heap_table_size: These settings control the maximum
size of temporary tables used by MySQL. Increasing them could improve
performance, but be careful not to set them too high or you could risk running
out of memory.

● query_cache_size: Enabling the query cache might improve performance for
read-heavy workloads. Currently set to 0, consider setting it to a higher value.

● join_buffer_size: Currently set to 4GB, this value can be reduced to 4M or 8M
which is enough to handle most joins.

● Consider upgrading the version of MariaDB on the database server. The
current version is 10.6.12, which has long-term support, but it will expire in three
years. Upgrading to a newer version can improve performance.

Structure
● Database Server: Use a separate database server to host the MariaDB. This will

help in separating the database load from the web servers and provide better
performance.

● Database Replication: Set up database replication to create a secondary
database server for redundancy and failover.

● Content Delivery Network (CDN): Use a CDN to cache and serve static assets
like images, videos, and other files. This will reduce the load on the web servers
and improve the application's performance.

● Cache: Use a caching mechanism like Memcached or Redis to cache
frequently accessed data. This will help in reducing the load on the database
server and improve the application's performance.

● Monitoring: Use a monitoring solution like Prometheus or Zabbix to monitor
the infrastructure and application health. This will help in identifying and
resolving issues before they impact the users.

● Load Balancer: Use a load balancer to distribute traffic across multiple web
servers. This will help in distributing the load and provide high availability.

Technical Recommendations: General
Skvare is providing the following set of tactical recommendations, based on our
review of the WordPress+CiviCRM system and discussions with the Libertarian Party
team. These recommendations can be implemented in the short term, some of them
immediately.

Internal CiviCRM search and reporting

Currently, national party and affiliate users are using CiviCRM’s Search Kit and Search
Builder features for standard search and reporting. Skvare’s recommendation is that
these search features be hidden and/or discouraged for most users. Instead, direct
them to Basic Search and Advanced Search by modifying the CiviCRM navigation
menu. This menu has already been modified to place Basic and Advanced searches
under the “Legacy Search” heading. We recommend reverting that change.

From CiviCRM’s Search Kit documentation:
SearchKit is a powerful search query builder with extensive options for displaying
results. It is appropriate for site builders, power users and developers but non-
technical staff are likely to need training or to spend some time learning the
interface. Alternatively a more experienced user or developer may create SearchKit
searches and make them available to other users via the menu system or as a dashlet
on the main CiviCRM screen.

When to implement: right now, unless it’s preferable to announce this change to
affiliate users in advance. In that case we recommend you schedule this change for a
date of your choice and make the announcement now.

End User Support and Documentation
Although this assessment did not include a review of the external help and support
site, we did observe that it is a separate site which requires its own separate login.
Without knowing the reasons it was set up this way, we recommend considering a
migration of that content to the WordPress site. There are a variety of options for
configuring a subset of WordPress site content so it’s visible only to authorized users.

Simplify and Streamline Technical Tools

Based on our system review, we think it is very likely that speed and performance
issues are caused by the complexity of WordPress+CiviCRM configuration. In this
section we outline a recommended approach for simplifying and streamlining.

Create a Reference Instance

We recommend creating a “vanilla” WordPress + CiviCRM instance for the
technical team to use for diagnostic and development purposes. This would be in
addition to dev instances which more closely match the production system.

A “vanilla” instance will support the creation of developer documentation (next step).
It will also facilitate minor changes like the search menu changes recommended
above (Internal CiviCRM Search and Reporting) by enabling you to easily see what
CiviCRM’s unmodified search menu looks like.

At Skvare we maintain several such instances for internal use. When investigating an
issue, one common question that arises is “is this [system behavior] normal?” It’s
valuable to check against a “clean” install and immediately know whether you’re
troubleshooting something specific to your site vs a standard behavior.

https://docs.civicrm.org/user/en/latest/searching/searchkit/what-is-searchkit/

Create Developer Documentation

This recommendation will come as no surprise to the Libertarian Party’s technical
team.

We recommend documenting the site’s WordPress plugins, CiviCRM extensions, and
custom code. A simple list of plugins and extensions will not be very useful; it’s far
more important to document what each one does and where in the system this
behavior can be observed.

Fortunately, the site’s custom code is not very extensive at all, and quite limited in its
functionality.

Remove Unnecessary Add-Ons

Some WordPress plugins and CiviCRM extensions can have significant impacts on
performance. The Libertarian Party’s system has a notably high number of both.

Recommendation: uninstall plugins and extensions which may be negatively
affecting performance.

Clearly this process will require caution! Once the purpose and behavior of each
plugin and extension is documented (Developer Documentation, above) you can
begin to analyze whether that behavior is needed. Before removing a plugin or
extension, verify that it is not required by another plugin or extension, or by custom
code.

Some extensions which are likely contributing to performance issues:

● Activity Type ACL
● Access Control by Financial Type for Reports: causes significant performance

degradation on some large sites.
● Custom CiviCRM Permissions (see User Permissions section for

recommendations on this extension)

Some extensions are improving performance and should be left installed and
enabled, such as:

● INNODB triggers
● CSS/JS aggregator

Convert CiviRules to Custom Code

We have never seen so many CiviRules in one site. Many of them control adding
contacts to CiviCRM Groups: state-specific groups, email lists, etc. It looks like
hundreds of rules may be firing in response to simple actions such as adding or
editing a contact.

The reason contacts need to be added to these groups is clear. CiviCRM’s multisite
and ACL-based permissions – the permissions which control which affiliate users can
see which contacts – rely on CiviCRM groups. They do not work with Smart Groups;
the groups must be Basic. Therefore, some process is necessary to add contacts to,
say, the Alaska state party group if that contact is in Alaska.

An experienced CiviCRM developer should move this functionality to a custom
CiviCRM extension.

● Instead of hundreds of separate rules firing at all times, contact add/edit will
trigger one process which handles all the logic of multiple states and any other
group membership required.

● For enhanced accuracy, an additional cleanup process may be developed as a
Scheduled Job which would run overnight. It would check for group changes
that should have happened but failed for any reason.

Additionally, it looks like the current collection of CiviRules do not fully handle group
changes or removals: they add a contact to a group when an address is added, but
appear not to include a mechanism to remove a contact from a group when its
address is deleted or changed. (Due to the sheer quantity of rules, it is quite possible
this behavior does exist and we just didn’t spot it.)

Optimize Smart Groups and ACLs

See the full set of recommendations here:
https://docs.civicrm.org/sysadmin/en/latest/setup/optimizations/

Basically all of these recommendations are relevant for the Libertarian Party. They
have been implemented at some point in the past, as evidenced by these (good, and
appropriate for this system) settings in civicrm.settings.php:

$civicrm_setting['CiviCRM Preferences']['smart_group_cache_refresh_mode'] =

'deterministic';

$civicrm_setting['CiviCRM Preferences']['acl_cache_refresh_mode'] =

'deterministic';

https://docs.civicrm.org/sysadmin/en/latest/setup/optimizations/

Most of the settings described in the above-linked documentation have different
effects depending on the site and its activity level, whether and how various CiviCRM
features are used, and the values of other related settings. We recommend reviewing
them again now.

If possible, decrease the frequency of the Flush Group Cache scheduled job in
CiviCRM. It is currently set to (Always).

Cache

The current settings for the CiviCRM “Clean-up Temporary Data and Files” job are
good: database cache is retained until manually cleared.

We recommend enabling Memcache or Redis to improve performance.

User Permissions
Granting additional user permissions, which the party has reported is one of its short-
term goals, is fundamentally a business decision. The risk is that increased
permissions will require additional training and support, and introduce a greater risk
of incorrect setup or inaccurate data.

From the technical side, the current challenge in changing permissions is that they
are managed in a lot of different places. This section summarizes where and how
permissions are controlled, and provides recommendations for simplifying.

Conceptual Overview: User Permissions, Multisite and ACLs

● Multi-site / ACLs - based on CiviCRM Groups - controls who you can see*
● User roles & permissions - based on WordPress user roles - controls what you

can do*

*There are exceptions. This is a generalization.

Additional access rules and permissions are used to define contact summary layout,
menu items, and other UI elements.

WordPress and CiviCRM Multisite
Multisite is configured correctly. WordPress and CiviCRM domains are based on
domain groups. The relevant CiviCRM Groups are flagged as Reserved (good) and
named “[STATE ABBREV] State.”
A system of CiviRule actions adds contacts to the appropriate group. See Convert
CiviRules to Custom Code, above, for an important recommendation on simplifying
this process.

Because multisite CRM behavior requires constant checking of which users can see
which contacts, this setup itself can be fairly resource intensive. See Optimize Smart
Groups and ACLs above for recommendations on optimization. Multisite relies on
ACL functionality, so the ACL recommendations apply.

Additional Permissions Features and Settings

WordPress User Roles via User Role Editor

In WordPress, a small set of non-standard user roles is created via the User Role Editor
plugin. These roles are: Administrator, Anonymous, Contributor, Editor, State Admin,
Subscriber, Volunteer. Given our understanding of the system, this seems entirely
appropriate. Both WordPress and CiviCRM permissions are controlled via this plugin.

CiviCRM: WordPress Access Control

WordPress Access Control permissions are configured within CiviCRM > Users and
Permissions. There is significant overlap between these settings and the ones
controlled by the WordPress User Role Editor plugin (above), with the WordPress
plugin evidently superseding these settings.

Recommendation: there is certainly no need for this comprehensive list of
permissions to be managed in two places, but this one is native CiviCRM, and the
WordPress version comes with the ability to have user roles such as “State Admin.”
Conduct a round of testing on a dev instance to confirm that the WordPress plugin’s
settings do in fact take precedence, and then make a note in the developer
documentation to ignore this CiviCRM settings page going forward.

If testing on a dev instance reveals more complexity – such as the need for a
permission to be turned on in both places in order to be active in practice – then
decide which will be the authoritative source of permissions. Set all permissions in the
other to all-on or all-off, as needed such that the authoritative version works as
expected.

https://my.lp.org/wp-admin/users.php?page=users-user-role-editor-pro.php
https://my.lp.org/wp-admin/admin.php?page=CiviCRM&q=civicrm%2Fadmin%2Faccess%2Fwp-permissions&reset=1

CiviCRM ACLs

CiviCRM ACLs are in use in addition to parallel multisite permissions. These appear to
layer on top of multisite domains and the contacts accessible there, with ACL regions
each covering multiple states.

Recommendation: Upon review, it appears there are very few users in the ACL user
groups. Are these critical to maintain? Can this handful of regional users be safely
granted wider system access instead? Removing this additional layer of visibility-type
permissions may improve performance.

CiviCRM Groups

In the system CiviCRM Groups are used for (among other things): Domains, ACLs, and
WordPress Group Sync.

Recommendation: review all CiviCRM groups flagged as “domain access”; delete
unused ones.

WordPress Groups and Related Plugins

There are 28 WordPress Groups including Candidate Advanced, Candidate Basic,
Super State Admin, Super Staff Admin. WordPress groups are synced with CiviCRM
groups via the CiviCRM Groups Sync extension. (Adding a contact to a CiviCRM group
grants a set of permissions. Effects appear in WordPress menus, CiviCRM contact
summary screen, etc.)

The same extensive set of permissions which can be controlled via the WordPress
User Role extension and CiviCRM’s WordPress Access Control settings are also
controlled here.

Recommendation: Prioritize this feature for removal. Perform a detailed review of
the functionality it currently provides. Determine which functionality is necessary to
maintain and which can be discontinued. Transition necessary functionality to other
WordPress and CiviCRM features.

CiviCRM Extension: Contact Summary Editor

https://my.lp.org/wp-admin/admin.php?page=CiviCRM&q=civicrm%2Fadmin%2Faccess&reset=1
https://my.lp.org/wp-admin/admin.php?page=CiviCRM&q=civicrm%2Fgroup&reset=1
https://my.lp.org/wp-admin/admin.php?page=groups-admin
https://develop.tadpole.cc/plugins/civicrm-network-groups
https://develop.tadpole.cc/plugins/civicrm-network-groups
https://develop.tadpole.cc/plugins/civicrm-groups-sync

The Contact Summary Editor extension allows different CiviCRM users to see different
versions of the contact summary screen (the main screen in CiviCRM when you’re
looking at a contact record). It relies on CiviCRM Groups.

This feature represents a deviation from the rule that groups control who you can see;
roles control what you can do. Contact layouts have been modified based on user role
(State Admin, Development, etc.) which is a logical use for this feature, but these are
definitely user roles which in this case are defined as CiviCRM Groups.

Recommendation: review and simplify this configuration. There are a number of
competing/inactive layouts saved in the system. For example, since the Development
layout follows the Administrator layout (in the list which corresponds to their
rank/priority), and Development is being shown to no users that aren’t included in
Administrator, the Development layout will never be shown.

By themselves these conflicts are not causing any problems; they’re not doing
anything at all. Removing unused and logically-deprecated layouts will help identify
whether and how much this feature is actually being used. Ideally it can be simplified
to a single layout for all users, removing the need for Groups involvement and any
coordination with user roles.

CiviCRM Extension: Custom CiviCRM Permissions

The Custom CiviCRM Permissions extension has been used to create what are
effectively user roles but have been added here as permissions. This is somewhat out
of place. CiviCRM permissions are things like "view all contacts," "create contribution,"
or "delete activity," not things like "state admin."

Tentatively, it appears that these roles were defined, via this extension, as CiviCRM
permissions. There are a lot of occurrences of
if (! current_user_can('[PERMISSION]'))

in this site's custom code. It appears that these roles were defined as permissions
specifically so this one method could be used to check the current user's role for
particular operations.

Recommendation: remove this. Modify custom code to check permissions in a
standard way, preferably by checking for a relevant CiviCRM permission rather than
an effectively hardcoded user role. When the code updates have been completed,
uninstall this extension.

CiviCRM Custom Extensions

https://my.lp.org/wp-admin/admin.php?page=CiviCRM&q=civicrm%2Fadmin%2Fcontactlayout
https://my.lp.org/wp-admin/admin.php?page=CiviCRM&q=civicrm%2Fadmin%2Foptions%2Fcustom_civi_permissions&reset=1

There are a number of customs which specifically affect permissions within the
system, such as most of the code in /civicrm_custom/CRM/

Suggestion: clean up these custom extensions by reviewing them individually.
For each one: document its functionality, research and document the purpose,
confirm the continued need (or not).

As a preliminary or short-term step, have an experienced CiviCRM developer review
custom extensions for potential resource and performance issues.

	Goals of this Assessment
	Assessment Overview
	Planning and Strategy
	Future Planning

	Strategic Prioritization
	Balancing Features & Friendliness
	Summary of Technology Platform Priorities
	Strategic Selection of Features
	Special Considerations

	Strategic Feature Analysis: Part 1
	Strategic Feature Analysis: Part 2
	Strategy and Planning: Summary

	Technical Recommendations: Server and Infrastructure
	Apache Web Server
	PHP
	MySQL
	Structure

	Technical Recommendations: General
	Internal CiviCRM search and reporting
	End User Support and Documentation
	Simplify and Streamline Technical Tools
	Create a Reference Instance
	Create Developer Documentation
	Remove Unnecessary Add-Ons

	Convert CiviRules to Custom Code
	Optimize Smart Groups and ACLs
	Cache

	User Permissions
	Conceptual Overview: User Permissions, Multisite and ACLs
	WordPress and CiviCRM Multisite
	Additional Permissions Features and Settings
	WordPress User Roles via User Role Editor
	CiviCRM: WordPress Access Control
	CiviCRM ACLs
	CiviCRM Groups
	WordPress Groups and Related Plugins
	CiviCRM Extension: Contact Summary Editor
	CiviCRM Extension: Custom CiviCRM Permissions
	CiviCRM Custom Extensions

