The HTML layout is much nicer where I originally posted this bug -
https://github.com/datastax/spark-cassandra-connector/issues/512
I created a table in Cassandra and inserted data:
create table timestamp_conversion_bug (k int, v int, d timestamp, primary key(k,v));
insert into timestamp_conversion_bug (k, v, d) values (1, 1, '2015-01-03 15:13');
insert into timestamp_conversion_bug (k, v, d) values (1, 2, '2015-01-03 16:13');
insert into timestamp_conversion_bug (k, v, d) values (1, 3, '2015-01-03 17:13');
insert into timestamp_conversion_bug (k, v, d) values (1, 4, '2015-01-03 18:13');
I then queried the table using the connector and Spark SQL:
package poc;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SchemaRDD;
import org.apache.spark.sql.cassandra.CassandraSQLContext;
import org.apache.spark.sql.catalyst.expressions.Row;
import com.datastax.bdp.spark.DseSparkConfHelper;
public class TimestampConversionBug {
public static void main( String[] args ) {
SparkConf conf = DseSparkConfHelper.enrichSparkConf(new SparkConf().setAppName( "TimestampConversionBug" ));
JavaSparkContext jsc = new JavaSparkContext(conf);
CassandraSQLContext cassandraContext = new CassandraSQLContext(
jsc.sc());
String keyspace = "test";
cassandraContext.setKeyspace( keyspace );
SchemaRDD rdd = cassandraContext.sql( "select k, min(d), max(d) from test.timestamp_conversion_bug group by k" );
JavaRDD<Row> jrdd = rdd.toJavaRDD();
for ( Row row : jrdd.collect() ) {
System.out.println( row );
}
}
}
This results in the following stacktrace:
15/01/15 10:19:39 ERROR TaskSetManager: Task 0 in stage 1.0 failed 4 times; aborting job
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 4 times, most recent failure: Lost task 0.3 in stage 1.0 (TID 3, 127.0.0.1): java.lang.ClassCastException: java.util.Date cannot be cast to java.sql.Timestamp
org.apache.spark.sql.catalyst.types.TimestampType$$anon$1.compare(dataTypes.scala:166)
scala.math.Ordering$
class.gt(Ordering.scala:97)
org.apache.spark.sql.catalyst.types.TimestampType$$anon$
1.gt(dataTypes.scala:166)
org.apache.spark.sql.catalyst.expressions.GreaterThan$$anonfun$eval$4.apply(predicates.scala:187)
org.apache.spark.sql.catalyst.expressions.GreaterThan$$anonfun$eval$4.apply(predicates.scala:187)
org.apache.spark.sql.catalyst.expressions.Expression.c2(Expression.scala:217)
org.apache.spark.sql.catalyst.expressions.GreaterThan.eval(predicates.scala:187)
org.apache.spark.sql.catalyst.expressions.MinFunction.update(aggregates.scala:114)
org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$7.apply(Aggregate.scala:167)
org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$7.apply(Aggregate.scala:151)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
org.apache.spark.scheduler.Task.run(Task.scala:54)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1185)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1174)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1173)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1173)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:688)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:688)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1391)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Note that when I execute the query in the interactive DSE Spark command line the query works:
scala> sc.sql("select k, min(d), max(d) from test.timestamp_conversion_bug group by k");
OK
15/01/15 10:20:45 WARN LoadSnappy: Snappy native library not loaded
res4: Seq[String] = Buffer(1 2015-01-03 15:13:00 2015-01-03 18:13:00)