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Abstract. In the context of the NIST post-quantum cryptography project, there have been claims
that the Gaborit&Aguilar-Melchor patent could apply to the Kyber and Saber encryption schemes. In
this short note, we argue that these claims are in contradiction with the potential validity of the patent.

1 Introduction

In 2015, NIST announced its intention to standardize post-quantum cryptographic primitives (encryption
schemes, key exchange mechanisms and signatures). For this purpose, it set up a post-quantum cryptography
project,4 based on submissions of candidate schemes. At the time this note is written, we are at the third
round of selection, with 7 finalists and 8 so-called alternates. As the project moved forward, the question
of applicability of patents to candidates became more pertinent. This note concerns the Gaborit&Aguilar-
Melchor patent [GAM10] owned by CNRS, and claims about its applicability to Kyber [BDK+18, ABD+21]
and Saber [DKRV18, BMD+20]. In the rest of the note, we restrict the discussion to Kyber, as the differences
between Kyber and Saber are irrelevant for the question under scope.

CNRS, which owns the patent, has made its position available online.5 (As this webpage changes over
time, we provide its current version in appendix.) Although it does not mention the Gaborit&Aguilar-
Melchor patent nor Kyber and Saber explicitly, no other CNRS-owned patent is known that would apply to
the NIST project third round finalists. CNRS could possibly claim rights for the NTRU LPRime scheme of
the NTRUPrime alternate [BBC+20]: we do not cover the case of NTRU LPRime in this note. CNRS could
possibly claim rights for the BIKE [ABB+21] and HQC [MAB+21] alternates, but it has lifted its intellectual
property claims for these.6 This targeting of the lattice-based candidates was confirmed by Dustin Moody
in an invited talk at the PQCrypto conference.7 Finally, the threat of this patent to Kyber and Saber was
also mentioned in the documentation of the NTRUPrime candidate [BBC+20].
Contribution. In this note, our aim is to clarify that this patent applicability claim to Kyber and Saber
is baseless. The patent considers a commutative algebraic setup, as insisted upon by its owner, as otherwise
it would be invalidated by the prior work, including that of Lyubashevsky, Palacio and Segev [LPS10] in
the non-commutative case. Due to this algebraic setup, it cannot apply to the Kyber and Saber encryption
schemes, which use the non-commutative setup of [LPS10]. Hence the patent cannot both claim novelty and
apply to Kyber and Saber. This said, we do not discuss here whether the prior work, including [LPS10],
invalidates the Gaborit&Aguilar-Melchor patent or not – we only focus on the invalidity of the applicability
of the patent to cover Kyber and Saber.

In Section 2, we first describe the LPS scheme, which is a version of Regev’s LWE scheme [Reg09] in
which the public key and the first ciphertext component are symmetrically formed. We then give the scheme
4 https://csrc.nist.gov/Projects/post-quantum-cryptography/
5 https://www.cnrsinnovation.com/?lang=en
6 See p. 26 and p. 15 of the BIKE and HQC IP statements, available at

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

7 See 1:51:06 and 2:03:20 of https://www.youtube.com/watch?v=FdOKWktBLhU



from the GA patent, and then finaly describe Kyber. This will illustrate how the structure of Kyber mimics
LPS, while the scheme from the GA patent is essentially a dimension 1 instance of LPS. In Section 3, we
give relevant quotes from the proceedings between Keltie LLP and CNRS, in which Keltie tried to invalidate
the GA patent based on prior art. The CNRS defense was that by being a dimension 1 instance, the scheme
became commutative, and this commutativity was a crucial element of the scheme that was not present in
others. Most importantly for Kyber and Saber, CNRS then insisted that their patent does not stand in the
way of non-commutative versions of the scheme being patented later by others.

Notations. Matrices are in bold upper-case. Vectors are in bold lower-case. The transpose of a vector s
is denoted sT . Unless transposed, a vector is always a column vector. The notation Zq refers to the set of
integers modulo q.

2 Encryption schemes

In this section, we recall the public-key encryption schemes from Lyubashevsky, Palacio and Segev [LPS10],
Gaborit and Aguilar-Melchor [GAM10] and Kyber [BDK+18, ABD+21]. We focus on the aspects relevant
to their comparison.

The LPS encryption scheme. As discussed in [LPS10, Section 1] and [Gol10, Section 7], the LPS encryp-
tion scheme from [LPS10, Section 3] can equivalently be described either in terms of the subset-sum problem
modulo an integer qm, or with m-dimensional square matrices and vectors modulo q. Here, we choose the
second formalism.

KeyGen: The secret key sk is a vector s ∈ Zm
q that is small, i.e., whose entries have absolute values

that are small compared to q. The public key pk = (A, t) consists of a matrix A ∈ Zm×m
q and a

vector t = A · s + e ∈ Zm
q , where e is a small vector (in the sense above). Note that A is independent of

sk and can be considered as a public parameter rather than as part of pk.
Enc: To encrypt a bit z ∈ {0, 1}, one first samples a small vector r ∈ Zn

q . Then one computes cT
1 =

rT · A + eT
1 ∈ Zn

q and c2 = rT · t + e2 + (q − 1)/2 · z, where the coordinates of e1 and e2 have small
absolute values compared to q. Finally, one returns the ciphertext ct = (c1, c2) ∈ Zm

q × Zq.
Dec: To decrypt a well-formed ciphertext ct = (c1, c2) with the secret key sk = s, one computes

c2 − cT
1 · s = rT · (A · s + e) + e2 + q − 1

2 · z − (rT ·A + eT
1 ) · s

= q − 1
2 · z +

(
rT · e + e2 − eT

1 · s
)

.

The term rT · e + e2 − eT
1 · s having a small absolute value when reduced modulo q (which is ensured by

setting q appropriately), the message z can be recovered by checking whether c2 − cT
1 · s is closer to 0 or

to (q − 1)/2.

In [LPS10, Section 3], several bits z1, . . . , zk can be encrypted at once, by using k vectors si for the secret
key and k vectors ti = A ·si +ei in the public key. In [LPS10, Section 3], the small vectors s and r are chosen
binary and the error terms e, e1, e2 are deterministically determined by the other quantities: this is due to
the subset sum formulation of the scheme (these terms correspond to carries). The scheme can obviously
handle small vectors that are not binary and randomized error terms (as observed for example in [Gol10]).
Overall, the key equation providing correctness is

rT · (A · s)− (rT ·A) · s = 0. (1)

A reader from the area may notice the resemblance between the LPS encryption scheme and Regev’s
encryption scheme from [Reg09]. The main difference lies in the symmetry between c1 and t, which in
particular allows to choose a square matrix A.
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The GA encryption scheme. The Gaborit&Aguilar-Melchor patent [GAM10] provides both a key ex-
change mechanism and a public key encryption scheme. They are equivalent, and we choose here the encryp-
tion formalism, to ease the comparisons. For the same reason, we adapt the notations of [GAM10] to those
of the prior work [LPS10]. The scheme relies on a ring R for which there exists a notion of smallness, and on
a map f : R → R such that for all x, y ∈ R, if x, y are small compared to f(x), f(y) then x · f(y)− y · f(x)
is small. The map f is a public parameter.

KeyGen: The secret key sk is a small ring element s ∈ R. The public key pk is a ring element t = f(s) + e,
where e ∈ R is small.

Enc: To encrypt a message z, one first samples r, e1, e2 ∈ R small and computes c1 = f(r) + e1 and c2 =
r · t + G · z + e2, where G ∈ R is a public parameter. The ciphertext is ct = (c1, c2) ∈ R×R.

Dec: To decrypt a well-formed ciphertext ct = (c1, c2) with a secret key sk = s, one computes

c2 − c1 · s = r · (f(s) + e) + G · z + e2 − (f(r) + e1) · s
= G · z + (re− e1s + e2) + (r · f(s)− f(r) · s).

The term re− e1s + e2 is small as it is a combination of small elements, and the term r · f(s)− f(r) · s
is small by assumption on f . If G is set properly, then the term G · z dominates (unless z = 0) and one
may be able to recover z.

Note that the key equation providing correctness of the GA scheme is

r · f(s)− f(r) · s ≈ 0. (2)

Several instantiations are provided in [GAM10]. If one wants to compare with the LPS scheme, the
relevant one is to set R = Zq, f : x 7→ a · x for some public parameter a ∈ R and G = (q − 1)/2. One then
exactly recovers the LPS encryption scheme as presented above, with m = 1. In particular, in that case,
Equation (2) with an equality is exactly Equation (1). Note that one cannot recover [LPS10] for m ≥ 2, as
it involves matrices and vectors (over a ring), which do not commute: to recover the GA scheme, one would
need a set of matrices that forms a commutative ring.

The Kyber encryption scheme. Kyber [BDK+18, ABD+21] relies on a polynomial ring Rq = Zq[x]/(x256+
1). We describe here a simplified version of the CPA-secure public-key encryption scheme version of Ky-
ber [BDK+18, Section 3].

KeyGen: The secret key sk is a vector s ∈ Rm
q that is small, i.e., whose entries are polynomials with

coefficients that have absolute values that are small compared to q. The public key pk = (A, t) consists
of a matrix A ∈ Rm×m

q and a vector t = A · s + e ∈ Rm
q , where e is small.

Enc: To encrypt a polynomial z ∈ Rq with binary coefficients, one first samples a small vector r ∈ Rm
q .

Then one computes cT
1 = rT · A + eT

1 ∈ Rm
q and c2 = rT · t + e2 + dq/2c · z, where e1 and e2 are small.

Finally, one returns a ciphertext ct = (c1, c2) ∈ Rm
q ×Rq.

Dec: To decrypt a well-formed ciphertext ct = (c1, c2) with a secret key sk = s, one computes

c2 − cT
1 · s = rT · (A · s + e) + e2 + dq/2c · z − (rT ·A + eT

1 ) · s
= dq/2c · z +

(
rT · e + e2 − eT

1 · s
)

.

The scheme correctness is argued exactly as in the LPS scheme. Actually, in terms of equations, this
simplified version of the Kyber encryption scheme exactly matches with the above description of the
LPS scheme.
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3 On the applicability of the GA patent to Kyber

In the descriptions of the three schemes above, it is important to note that the GA scheme requires com-
mutativity of the ring R, to which belong the secret key sk, the public key pk, and the two ciphertext
components c1 and c2. Indeed, Equation (1) makes a crucial use of transposition when applied to matrices
and vectors rather than ring elements. This is similarly used for the matrices and vectors occurring in the
Kyber encryption scheme. To make the equation work without transposition requires that the elements all
belong to a commutative ring, as in the GA scheme. Now, if commutativity is what makes the GA scheme
novel compared to prior work, including [LPS10], it cannot be claimed that Kyber derives from the GA
scheme.

This basic impossibility is well-understood by the owner of the patent itself. The comparison between
the encryption schemes from [GAM10] and prior art came under scrutiny in Keltie LLP’s opposition to the
patent, at the European Patent Office.8

Keltie claimed that Claim 1 of the patent, the GA encryption scheme presented in Section 2, is too
general and fails when the ring R is non-commutative. CNRS replied that the fact that Claim 1 only applies
to commutative rings is obvious to any expert. Here is their reply (the translation from French – with some
aid from “google translate”– the content of square brackets, and the emphasis are ours):9

(1) “Commutative” character: The opponent [Keltie] argues that the commutativity of the ring R would be
presented as indispensable in the description and should therefore appear in Claim 1.
In algebra, a commutative ring is a ring whose multiplication law is commutative. Commutativity is one of
the main properties of rings. This emerges, for example, from an algebra course intended for undergraduate
students in Mathematics (document P1), in which Chapter 3, Section 1.1.1, Page 37 proposes a definition
of the word “ring” followed immediately by its two main properties: the “commutative” character and the
“unitary” character. Thus the most natural example of a ring is a commutative ring.
In the description of the patent, the examples of rings, i.e., the rings F2[x]/(x− 1), Z/pZ, (Z/pZ)[x]/(x− 1)
and (Z/pZ)[x]/(xn − 1) (Paragraph 53), are all commutative rings.
In fact, PA and PB [with the notations of the GA description of Section 2, these are c1s and rt] are presented
in Claim 1 respectively in the form PA = YAXB + YAf(YB) and PB = YBXA + YBf(YA) [in Section 2, these
are se1 +sf(r) and re+rf(s)]. According to the description, it is deduced that PA and PB then only differ by
the value YAXB−YBXA [in Section 2, this is se1−re], which implies that YAf(YB)−YBf(YA) is zero or is at
the very least of small norm. This supposes in particular that the used ring is commutative (beyond
the choice of the function f). If the ring is not commutative, Claim 1 should have been reformulated to
take account of the non-negligible difference YAf(YB)− YBf(YA).
Those skilled in the art would therefore have recognized that, even if the commutativity is not
explicitly specified, it is an implicit characteristic of Claim 1.
Since it is an implicit characteristic, it is not necessary to include it in Claim 1, since as stated in Guidelines
F-IV-4.5.3, “it is not necessary to include all the details of the invention in the independent claim”.
For all practical purposes, to make precise this implicit characteristic, several auxiliary requests have been
filed specifying that the ring R is “commutative” (AR1, AR3, AR5 and AR7).

In the same document, CNRS went further than just saying that commutativity is implicit: commutativity
is actually crucial to separating their scheme from the prior art of Regev’s LWE encryption scheme.10 The
parameters (SA and SB , which correspond to t and c1 with the notations of Section 2) are of the same
form in the GA scheme, i.e., each is an element of the ring R. In Regev’s scheme, and in LPS and Kyber,
these two ciphertexts elements are crucially different (i.e., they are vectors or matrices). Because they are
different, there is no commutativity in Equation (1). The claimed novelty in the GA scheme seems to be
that everything is an element of R.
8 All documents available at https://register.epo.org/application?number=EP11712927&tab=doclist
9 See Page 3 of https://register.epo.org/application?documentId=E0V2M3NP1191DSU&number=EP11712927&lng=

en&npl=false
10 See Page 7 of https://register.epo.org/application?documentId=E0V2M3NP1191DSU&number=EP11712927&lng=

en&npl=false
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It should also be noted that the parameters ’P ’ and ’u’ of document E1 [See Algorithm 5 on Page 19 of
https://cims.nyu.edu/~regev/papers/pqc.pdf – P corresponds to t and u corresponds to c1 in Section 2],
which the opponent claims to correspond to the syndromes SA and SB , are not of the same nature. There is
thus no symmetry of calculation in the document E1. Claim 1 does not specifically mention that the
SA and SB syndromes must be of the same nature, but this is made implicit by the identical
calculation formulas of SA and SB . This symmetry allows, during reconciliation, to have a difference
PA − PB which is of small norm. It should also be noted that the dimensions of the parameters
‘P ’ and ‘u’ of the document E1 depend on three parameters n, m and l. This is a much more
general teaching than Claim 1 of the patent, in which n = m = l = 1. In other words, to at least
partially achieve Claim 1, it would be necessary to choose the values of three parameters. However, a
multiple selection among three parameters is necessarily new (see paragraph L.C.6.3.3 of the Case
Law of the Boards of Appeal).

During the oral proceedings, CNRS emphasised again that their claim only covers commutative rings and
that their claim does not prevent non-commutative rings from being patented later.11

3.5 He [Keltie LLP] added that the owner [CNRS ] did not respond to the fact that the ring must be
commutative. He insists on the fact that to date, we do not know how to implement a non-commutative ring.
3.21 The owner indicates that in no case would the patent as granted prevent the protection
of a development based on non-commutative rings.

And finally, the implicit commutativity figured into the decision to uphold the patent.12

The opponent submitted that Claim 1 and all claims in general are directed to a ring R in a general manner
while the description only provides examples of commutative and cyclic polynomial rings so that these two
characteristics are indispensable.
The patent owner has indicated that this is a disguised clarity objection.
The opposition division is of the opinion that the description of the patent provides several examples of rings
allowing to carry out the invention and that the patent satisfies article EPC83. It is of the opinion that
the commutative and cyclic polynomial aspects are sufficiently described in the patent by the
function of the operations to be carried out and in particular by the function of operations of
type f(PA)− f(PB) to be carried out during the reconciliation stage.
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