
Efficient Lifting for Shorter Zero-Knowledge
Proofs and Post-Quantum Signatures

(Preliminary Draft)

Daniel Kales
Graz University of Technology

daniel.kales@iaik.tugraz.at

Greg Zaverucha
Microsoft Research
gregz@microsoft.com

October 29, 2021

1 Introduction
Picnic [CDG+17, ZCD+20] is a family of signature schemes built using zero-
knowledge proof systems, relying solely on the security of symmetric-key primi-
tives. It is an alternate candidate in the third round of the NIST post-quantum
standardization project. During key-generation, a one-way function (OWF) is
used to generate a keypair, the input to the one-way function is the signer’s secret
key and the output is the public key. A Picnic signature is a non-interactive
proof of knowledge that one knows the secret input to the one-way function
leading to the public output, with the message to be signed included in the
generation of the challenge for the zero-knowledge proof.

Concretely, Picnic uses a block cipher as a one-way function: the block cipher
key is the input to the OWF, the plaintext is chosen at random, and the public key
is the corresponding plaintext-ciphertext pair. Importantly, the zero-knowledge
proof needs to resist quantum attacks. One of the few known constructions
that achieve this are so called “MPC-in-the-head” (MPCitH) [IKOS07] proofs.
These proofs work by having the prover simulate an MPC protocol (with semi-
honest security). The protocol computes the function that defines the relation
(the OWF in the case of Picnic) and the prover commits to the internal state
of all parties. Later, a subset of the parties are revealed based on a random
challenge from the verifier, who can verify the consistency of the revealed
parties and gain some assurance that the unopened parties also behave honestly,
which in turn provides assurance that the prover knows the secret. Due to the
properties of the MPC protocol, revealing the state of a subset of the parties
does not leak any information about the secret input. Since the MPC protocol
is information-theoretically secure and the proof additionally only uses a hash
function, MPCitH proofs are resistant to known quantum attacks. Thus Picnic
also has post-quantum security provided the OWF does.

The theoretical framework for MPCitH proofs was given in [IKOS07], and
a first practical instantiation was presented in ZKBoo [GMO16]. An improved
version of ZKBoo, ZKB++ [CDG+17] was used in the first version of Picnic. Since
then, the area of MPCitH proof systems has seen multiple new instantiations with

1

different improvements and tradeoffs. The KKW proof system [KKW18] uses
an MPC protocol with a preprocessing phase, allowing for more communication
efficient online phases and a variable number of parties. Picnic later added
parameter sets based on KKW, named Picnic2 and Picnic3.

While ZKB++ and KKW focus on binary circuits, the MPCitH framework
also allows for arithmetic circuits over larger fields. This was for example used
in constructions focusing on signatures with (variants of) AES as the OWF,
such as BBQ [dDOS19], Banquet [BdK+21] and Rainier [DKR+21]. The latter
two protocols use a key idea from Baum and Nof [BN20]: instead of calculating
nonlinear operations (e.g., the AES S-boxes) in the MPC protocol, shares of the
result are injected by the prover as additional input. Then, a circuit-independent
checking protocol is executed to verify that the injected values are indeed correct.

The BN proof system supports generic arithmetic circuits, but has very
large proof sizes for OWFs defined over small fields. The reason is that the
soundness error of the checking protocol is 1/|F|, where F is the field where
the circuit is defined1, and therefore the protocol requires a large number of
parallel repetitions for small fields like F2. To get around this issue for AES,
the Banquet checking protocol lifts elements from F28 to a larger field F28λ to
increase the soundness. However, this also increases the size of the proof, since
it must include elements of the larger field. The Limbo proof system [dSGOT21]
also addresses this problem with lifting, and in [DKR+21] the authors explore
alternative OWFs that are defined over large fields. The latter approach is by
far the most efficient to date (in the context of signature schemes), but does
not apply to existing OWFs defined over small fields, such as AES and LowMC
(used in Picnic).

We dub this the lifting problem, and our goal is solve it in a more efficient way.
If we apply the lifting map used in Banquet to LowMC we could for example lift
each bit to a byte. But the lift is somewhat trivial, and the overhead, called the
rate, is high (eight in this example), and F8 is still not as large as we’d like from
a soundness perspective. For comparison, the rate in Banquet was 4 or 6 and the
larger field was 32 or 48 bits. A natural question is whether we can do better.

A reverse multiplication friendly embedding (RMFE) allows us to encode
multiple field elements into a field extension with better rate. RMFEs were intro-
duced by Cascudo et al. [CCXY18] in their work on the amortized communication
complexity of MPC protocols for binary circuits. The power of the embedding is
that coordinate-wise products in the base field are mapped to multiplications in
the extension field. For example, the (3, 5)2–RMFE allows us to lift a batch of 3
elements of F2 into F25 , with rate 5/3 = 1.6. Once we have encoded groups of
bits (x1, x2, x3) and (y1, y2, y3) we can multiply the encoded values in F25 , then
decode to get the three ANDs (x1 · y1, x2 · y2, x3 · y3). Importantly, the encoding
and decoding operations are linear, meaning the parties can compute the maps
on their shares locally to obtain shares of the encoded value.

There are somewhat strict limitations on the arithmetic operations one can
perform on encoded values such that the decoded values are correct, but we show
that an efficient checking protocol is possible. We explore different constructions
of RMFEs suitable for this application, and leverage a representation of the
LowMC S-box that can be implemented with one F23 multiplication (rather than
three ANDs). For Picnic and LowMC we end up using an optimal RMFE with

1This comes mainly from the fact that a random field element is chosen as a challenge.

2

rate 1.89, but our construction allows other RMFEs to be used as well.

1.1 Contributions
With the BN proof system [BN20] as our starting point, we design an improved
version and apply it to a possible fourth version of Picnic, called Picnic4.

BN++ and Helium We optimize the checking protocol from [BN20] (where
it is called the sacrificing-based proof protocol). At first we ignore the lifting
problem, and reduce proof sizes by about 2.5x. We call this new protocol with
optimizations BN++. Then we provide a soundness analysis for BN++ in
the non-interactive case, in order to choose concrete parameters for signature
schemes. Then we present Helium: a proof protocol that handles the small field
case, improving upon BN++ by using RMFEs instead of trivial lifting.

Picnic4 For Picnic signatures, we focus on the LowMC circuit, first presenting
an equivalent representation of the LowMC S-box, lifting three GF(2) multipli-
cations to a single GF(23) multiplication. We then instantiate a Helium-based
variant of Picnic. We give concrete parameters and implementation results. The
resulting signature size is 7.987 KB at NIST security level L1, 1.6x shorter than
Picnic3 (which has 12.5 KB signatures), the most recent version of Picnic. The
implementation is ongoing so the running times are preliminary. Based on our
reference implementation and experience with Banquet and Rainier, running
times should be competitive with Picnic3, perhaps slightly higher.

1.2 Status of this work
This is a draft of a work-in-progress. The focus is Picnic and LowMC, to preview
possible improvements to Picnic should NIST select it for the fourth round of its
Post-Quantum Cryptography Standardization Process. 2 The implementation is
preliminary. It confirms that the scheme works as expected and that the signature
sizes are correct, but it is not optimized so we do not yet have good benchmarks
for signing and verification time. The full version will have a broader scope,
including an investigation of other Picnic-like signature schemes constructed by
applying Helium to other OWFs.

1.3 Notation
In Table 1 we define some of the notation we use frequently in this document.
Additionally, in the MPC protocols we discuss, the prover will create secret
shares of a value x by having each party sample their share of x from their
random tape. If x must be a uniform random value, this is sufficient, but to
create a sharing of a given value, the prover additionally computes a “delta value”
to correct the sharing:

∆x = x−
N∑
i=1

x(i) .

The value ∆x is public, and the first party updates their share with it: x(1) =
x(1) + ∆x.

2See https://csrc.nist.gov/projects/post-quantum-cryptography.

3

https://csrc.nist.gov/projects/post-quantum-cryptography

κ Security parameter
N Number of parties
[x] The set {1, . . . , x}
τ Number of parallel repetitions
e Index of repetition e = 1, . . . , τ
i Index of party Pi, i = 1, . . . , N
ī, īe Index of unopened party, in repetition e
a(i) Party i’s share of a; sharing is additive a =

∑N
i=1 a

(i)

C, C An arithmetic circuit C with C multiplication gates
F Field where C is defined
K Extension field of F, output of RMFE encoding
k Number of F-elements encoded to one K-element
φ RMFE encoding function φ : Fk → K
ψ RMFE decoding function ψ : K→ Fk

Table 1: Notation used frequently in this document.

2 Improving the BN Zero-Knowledge Proof
In this section we first review the Baum-Nof zero-knowledge protocol, as presented
in [BN20], then give a series of four optimizations aimed at reducing the proof
size. Later we refer to the variant using all our optimizations as BN++.

2.1 The Baum-Nof Zero-Knowledge Proof
In [BN20], Baum and Nof presented a zero-knowledge argument of knowledge
based on the MPC-in-the-head approach by Ishai et al. [IKOS07], following the
approach by Katz, Kolesnikov and Wang [KKW18] of using an MPC protocol
with a pre-processing step. The protocol in [BN20] uses an MPC protocol with
standard multiplication triples (or Beaver triples [Bea92]), but instead of revealing
the pre-processing phase of some iterations to gain assurance that unrevealed
ones are also correct, they instead use a common technique from multi-party
computation and show that a triple is correct by “sacrificing” another one. A
special verifier party provides a random challenge, which is natural in the context
of MPCitH proof protocols. In a traditional interactive MPC, the parties can
jointly generate the challenge.

This procedure is repeated below, checking a triple (x, y, z) using a second
triple (a, b, c).

1. The verifier provides a random ε ∈ F.
2. The parties locally set α(i) = ε · x(i) + a(i), β(i) = y(i) + b(i).
3. The parties open α and β by broadcasting their shares.
4. The parties locally set v(i) = ε · z(i) − c(i) + α · b(i) + β · a(i) − α · β.
5. The parties open v by broadcasting their shares and check that v = 0.

In the context of an MPCitH proof, the first triple (x, y, z) comes from the
circuit evaluation (with shares of z being injected by the prover), and the second
triple (a, b, c) is a random triple, whose main job is to hide the first triple in the
broadcast values α and β.

4

The signature scheme based on the [BN20] protocol is depicted in Figure 1.
The circuit is assumed to be a one-way function, with input sk and output ct
(sk is the signing key and ct is the public key). For soundness the base protocol
is repeated τ times in parallel. Several hash functions: Commit, H1 and H2 are
required; as well as the two pseudorandom generators: Expand and ExpandTape.
All of these functions can be instantiated with the SHAKE128 extensible output
function (or SHAKE256 for larger security levels), with different constants added
for domain separation. The helper function Sample(t) samples elements from
a random tape t that was output by ExpandTape, keeping track of the current
position on the tape. The way the per-party seeds in each parallel repetition
are derived from a root seed in a binary tree is the same technique, originating
in [KKW18], used in Picnic, Banquet, Rainier and other MPCitH-based proofs.

5

Sign(sk,msg): Phase 1: Committing to the seeds and views of the parties.

1: Sample a random salt salt $← {0, 1}2κ.
2: for each parallel repetition e do
3: Sample a root seed: seede

$← {0, 1}κ.
4: Derive seed(1)

e , . . . , seed(N)
e as leaves of binary tree from seede.

5: for each party i do
6: Commit to seed: com(i)

e ← Commit(salt, e, i, seed(i)
e).

7: Expand random tape: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e)
8: Sample witness share: sk(i)

e ← Sample(tape(i)
e).

9: Compute witness offset: ∆ske ← sk−
∑

i
sk(i)
e .

10: Adjust first share: sk(1)
e ← sk(1)

e + ∆ske.
11: for each multiplication gate with index ` ∈ [C] do . Pre-processing triples
12: For each party i, set (a(i)

e,`, b
(i)
e,`, c

(i)
e,`)← Sample(tape(i)

e)
13: Compute ae,` =

∑N

i=1 a
(i)
e,`, be,` =

∑N

i=1 b
(i)
e,`, ce,` =

∑N

i=1 c
(i)
e,`

14: Compute offset ∆ce,` = ae,` · be,` − ce,`.
15: Adjust first share: c(1)

e,` ← c
(1)
e,` + ∆ce,`

16: for each gate g in C with index ` do . Online simulation
17: if g is an addition gate with inputs (x, y) then
18: The parties locally compute the output share z(i) = x(i) + y(i)

19: if g is a multiplication gate with inputs (xe,`, ye,`) then
20: Compute output shares z(i)

e,` = Sample(tape(i)
e).

21: Compute offset ∆ze,` = xe,` · ye,` −
∑N

i=1 z
(i)
e,`.

22: Adjust first share z(1)
e,` ← z

(1)
e,` + ∆ze,`.

23: Let ct(i)
e be the output shares of online simulation.

24: Set σ1 ← (salt, ((com(i)
e)i∈[N], (ct(i)

e)i∈[N],∆ske, (∆ce,`,∆ze,`)`∈[C])e∈[τ].
Phase 2: Challenging the checking protocol.
1: Compute challenge hash: h1 ← H1(salt,msg, σ1).
2: Expand hash: ((εe,`)`∈[C])e∈[τ] ← Expand(h1) where εe,` ∈ F.

Phase 3: Commit to simulation of checking protocol.
1: for each multiplication gate with index ` ∈ [C] do

2:
Simulate the triple checking protocol as defined above. Let α(i)

e,`

and β(i)
e,` be the two broadcast values and let v(i)

e,` be the output of
the checking protocol, for all parties i ∈ [N].

3: Set σ2 ← (salt, (((α(i)
e,`, β

(i)
e,`, v

(i)
e,`)i∈[N])`∈[C])e∈[τ].

Phase 4: Challenging the views of the MPC protocol.
1: Compute challenge hash: h2 ← H2(h1, σ2).
2: Expand hash: (̄ie)e∈[τ] ← Expand(h2) where īe ∈ [N].

Phase 5: Opening the views of the checking protocol.
1: for each repetition e do
2: seedse ← {log2(N) nodes needed to compute seede,i for i ∈ [N] \ {̄ie}}.
3: Output σ ←
4: (salt, h1, h2, (seedse, com(̄ie)

e ,∆ske, ct(̄ie)
e , (∆ce,`,∆ze,`, α(̄ie)

e,` , β
(̄ie)
e,` , v

(̄ie)
e,`)`∈[C])e∈[τ]).

Figure 1: Signature scheme based on the Baum-Nof MPCitH proof
protocol[BN20].

6

2.2 Optimized Proof Size Overview
Here we quantify the proof size of the BN protocol without optimizations, then
summarize how each of the optimizations in this section reduce the proof size.

The total proof size of the protocol in Figure 1 is

3κ+ τ · (4κ+ κ · dlog2(N)e+ M(C)) .

where M(C) = 5C log2(|F|) is the size of the checking protocol to ensure the
multiplications are correct. Referring to Figure 1, the five field elements per mul-
tiplication are (∆ce,`,∆ze,`, α(̄ie)

e,` , β
(̄ie)
e,` , v

(̄ie)
e,`)`∈[C]. Also note that this assumes

that the output of C is κ bits (as will be the case for Picnic). After Optimization 1,
the signature size will be

3κ+ τ · (3κ+ κ · dlog2(N)e+ M(C)) . (1)

Optimizations 2,3,4 will each reduce M(C), as summarized in Table 2. In Table 2
we also include the M(C) for the simple lifting (BN++ with lifting, Section 3.1)
and Helium (Section 3.2) zero-knowledge proofs. The sizes of the additional
parameters for these protocols are given in their respective sections.

Proof protocol M(C)
BN 5C log2(|F|)
BN + Opt. 2 4C log2(|F|)
BN + Opt. 2,3 3C log2(|F|)
BN + Opt. 2,3,4 (BN++) (2C + 1) log2(|F|)
Simple Lifting (BN++ and lifting) C(log2(|F|) + log2(|K|)) + log2(K)
Helium (BN++ and RMFE-lifting) dC/ke · (2 log2(|K|)) + log2(|K|)

Table 2: Summary of proof sizes after successive optimizations building up
to BN++, and for the simple lifting (Section 3.1) and Helium (Section 3.2)
zero-knowledge proofs. Here we give the size of the checking protocol, M(C),
only. To get the full proof size, substitute the value of M(C) into Eq. (1). K is
an extension field of F, where the size depends on the construction and k is a
parameter of the RMFE construction mapping Fk → K.

2.3 Optimization 1: Removing the Output Broadcast
In [BN20], the authors describe an optimization that utilizes a random linear
combination of all output shares ct(i)

e to reduce communication to a single field
element. We now give an optimization that saves all communication with regards
to the output shares.

Note that in the setting of the proof, the output of the circuit ct is public, so
it is known to the verifier. Furthermore, from the N − 1 seeds revealed to the
verifier, he can recompute ct(i)

e for all opened parties of a repetition and then
recalculate the missing share

ct(̄ie)
e = ct−

N∑
i=1
i 6=īe

ct(i)
e .

7

Intuitively, since all ct(i)
e are input to the hash function in Phase 2, this ensures

that the verifier is using the same shares of ct as the prover. This optimization
saves including the unopened party’s output broadcast message ct(̄ie)

e in the
proof, saving one output value per repetition. The proof size formula is given
in Eq. (1). The concrete size of the savings depends on the output size of C.
For LowMC at security level L1, this amounts to 129 bits, and once our other
parameters are chosen we use 18 repetitions so the total savings is about 290
bytes.

2.4 Optimization 2: Removing the Final Checking Proto-
col Broadcast

In [BN20], the authors describe another optimization that again utilizes a random
linear combination of all C output shares of the multiplications check v(i)

e,` to
reduce communication to a single field element. We now show how to reduce
this communication entirely.

As before, the verifier knows the plain output of the multiplications check,
as an accepting check should output ve,` = 0. Again, N − 1 seeds are revealed to
the verifier, meaning he can recompute v(i)

e,` for all opened parties of a repetition
and then re-calculate the missing share

v
(̄ie)
e,` = 0−

N∑
i=1
i 6=īe

v
(i)
e,` .

This optimization saves including v(̄ie)
e,` in the signature, saving another field

element per multiplication gate compared to the base protocol (or one field
element per repetition compared to the optimization in [BN20]).

After Optimization 2, M(C) = 4C log2(|F|), and together with Eq. (1) we get
the total proof size.

2.5 Optimization 3: Removing the Broadcast of β.
In the standard triple verification procedure from Section 2.1 the parties need
to broadcast both α and β. This is needed in general, so that one can verify
arbitrary triple pairs using this procedure. But consider two triples that are
related as follows: (x, y, z) and (a,−y, c). Due to the structure of the proof, we
can easily create the second multiplication triple by the parties locally computing
−y(i) = −(y(i)), randomly sampling a(i) and c(i) locally and the prover then
injects ∆c as before to fix the shares of c. If we now execute the same checking
protocol, we have β = y+ (−y), so β = 0, removing the need for a broadcast. For
simplicity we’ll compute β = y − b, so that b = y (rather than −y) and modify
the computation of v accordingly.

1. The verifier provides a random challenge ε ∈ F.
2. The parties locally set α(i) = ε · x(i) + a(i).
3. The parties open α by broadcasting their shares.
4. The parties locally set v(i) = α · y(i) − ε · z(i) − c(i).

8

5. The parties open v by broadcasting their shares and output acc iff v = 0.

The security of this protocol can be analyzed in a similar fashion to [BN20,
Lemma 2], however, we will add an additional optimization step in the following
section, then analyze the security of the resulting protocol.

After combining optimizations 1, 2 and 3, we must communicate the values
(α(̄i)
e,`,∆ce,`,∆ze,`) for each of the C multiplication gates, so the size of the

checking protocol is M(C) = 3C log2(|F|), which we can plug into the proof size
formula given in Eq. (1).

2.6 Optimization 4: Dot-Product Checking
In this optimization we again modify the checking protocol. We observe that the
protocol is proving that both (x, y, z) and (a, b, c) are valid multiplication triples.
However, for correctness of the circuit, we only need to prove that (x, y, z) is
a valid multiplication triple, and for (a, b, c) we only require that a and b are
random, so that x and y are hidden in the computation of α and β, and that c is
correlated to (a, b) in a way that allows us to create a checking protocol. We can
batch verification of all |C| triples, (x`, y`, z`)C`=1 given a random dot product,
((a`, b`)C`=1, c) where c =

∑C
`=1 a`b`, as follows.

For simplicity we start our description of the protocol from Optimization 3
(when b = y), but this optimization can be applied independently (i.e., when
b 6= y). Here all ` = 1, . . . , C multiplication gates are checked at once, the input
is (x`, y`, z`)C`=1 and ((a`, b`)C`=1, c), values that are secret-shared amongst the
parties.

1. The verifier provides a random challenge (ε1, . . . , εC) ∈ FC .

2. The parties locally set α(i)
` = ε · x(i)

` + a
(i)
` .

3. The parties open (α1, . . . , αC) by broadcasting their shares.
4. The parties locally set

v(i) = ε1z
(i)
1 − α1b

(i)
1

+ ε2z
(i)
2 − α2b

(i)
2

. . .

+ εC · z(i)
C − αC · b

(i)
C

− c(i)

Note that each of the C lines above is basically one instance of the non-
batched multiplication check, except that the C values of c` = a`b` are
summed together on the last line.

5. The parties open v by broadcasting v(i) and output acc iff v = 0.

The security of this protocol can be analyzed with a combination of related
ideas from [BN20, Lemma 2], and [dSGOT21, Lemma 4.1]. When compared to
the multiplication check protocol in [dSGOT21], our protocol uses independent
random challenges εi, rather than (R,R2, . . . , RC−1) for a single random R ∈ F.
Therefore, we can apply the Schwartz-Zippel lemma to a degree 1, multivariate
polynomial, rather than a degree C − 1 univariate polynomial. This decreases

9

the soundness error by a factor of C − 1, which is especially significant when the
field size is small.3

First we recall the multivariate version of the Schwartz-Zippel lemma.

Lemma 1 (General Schwartz-Zippel lemma). Let P (x1, . . . , xn) be a non-zero
polynomial of n variables with total degree d over F. For any finite subset S of
F, with at least d elements in it,

Pr[(r1, . . . , rn) $← Sn : P (r1, . . . , rn) = 0] ≤ d

|S|
.

The total degree of P is the largest sum of the exponents in a term of P . For
example, P (x1, x2) = 4x1

2x2
3+x1x2

2+1 has degree 5, and P (x1, x2) = 7x1+3x2
has degree 1.

Now we prove security of our dot-product based checking protocol. Note that
the protocol in Optimization 3 is a special case when C = 1.

Lemma 2. If the secret-shared input (x`, y`, z`)C`=1 contains an incorrect multi-
plication triple, or if the shares of ((a`, y`)C`=1, c) form an incorrect dot product,
then the parties output acc in the sub-protocol with probability at most 1/|F|.

Proof. Let ∆z` = z` − x` · y` and ∆c = c−
∑
a` · y`. If the parties output acc,

then v = 0, leading to:

v = −c+
∑

ε` · z` − α` · y`

= −c+
∑

ε` · (∆z` + x` · y`)− (ε` · x` − a`) · y`

= −c+
∑

ε`∆z` + ε` · z` − ε` · z` + a` · y`

= −c+
∑

a` · y` +
∑

ε`∆z`

= ε1∆z1 + ε2∆z2 + . . .+ εC∆zC + ∆c = 0

Define a multivariate polynomial

Q(X1, . . . , XC) = X1 ·∆z1 + · · ·+XC ·∆zC + ∆c

in F[X1, . . . , XC] and note that v = 0 iff Q(ε1, . . . , εC) = 0. When Q is the zero
polynomial, then all ∆z` = 0 and ∆c = 0 are zero, implying that z` = x` · y` and
c =

∑
a` · b`, and v = 0 is the correct result.

In the case of a cheating prover, Q is nonzero, and by the multivariate
version of the Schwartz-Zippel lemma (see Theorem 1), the probability that
Q(ε1, . . . , εC) = 0 is at most 1/|F|, since Q has degree 1 and (ε1, . . . , εC) is a
uniformly random point.

Remark 3. When C and |F| are small, we can compute v exhaustively for all
possible inputs (x, y, z, a, c) and get the exact probability that the protocol above
succeeds. We find that the bound of Lemma 2 can be off by a factor of two

3Whether Limbo can use independent challenges and also have improved analysis along
the lines of our Lemma 2 is an interesting question. For the simpler MultCheck protocol in
[dSGOT21], it appears possible, but the final Limbo ZK proof uses the CompressedMC checking
protocol, which seems to rely on univariate polynomials and a single challenge.

10

which could lead to a big difference in the number of repetitions required for
a sound protocol. For example, when C = 1 (multiplication triples are verified
individually) and F = GF(2), we found that the parties accept with probability
0.25, rather than 0.5 and with N = 256 parties this means that only 106 parallel
repetitions are required, rather than 202, leading to proofs that are roughly twice
as large. As a second example, when F = F3 and C = 2, the exact probability is
0.274, slightly less than 1/3. We observe that, as C and/or |F| get larger, the
empirically observed success probability (over many runs), is extremely close to
1/|F| as guaranteed by Lemma 2.

Privacy We show that the above checking protocol is (N − 1)-private, by
defining a simulator S that obtains shares {z(i)

` , b(i)` , c(i)` }`∈[C] for all parties
i ∈ [N] except for one, denoted ī. Simulator S chooses α(i)

` at random for all
parties. Then using the shares (z(i)

` , b(i)` , c(i)`), S computes v(i) honestly for the
N − 1 parties excluding party ī. For party ī’s share, since S knows that v = 0
in an accepting run of the protocol, it can solve for v(̄i) = 0−

∑
i6=ī v

(i) exactly
as in Optimization 2. Now we argue that S’s output is correctly distributed.
First we note that in a real execution α` = ε`x` + a` is uniformly distributed
in F since a` is a uniform random value, and the simulated value of α` is also
uniformly random in F. Next, the N − 1 shares of v computed honestly are
correctly distributed, and there is only one choice for party ī’s share that makes
the parties accept, making it the same in both simulated and real transcripts.

Signature size With optimizations 1,2,3 and 4, we must communicate (∆ze,`,
α

(̄i)
e,`) once for each of the C multiplication gates, and ∆ce once per repetition.

The size of the checking protocol is

M(C) = (2C + 1) · log2(|F|) ,

which together with Eq. (1) gives the proof size.

2.7 BN++: New Protocol with all Optimizations
In Fig. 2 we describe the new signing algorithm using optimizations 1, 2, 3 and
4. In Fig. 3 we describe the corresponding verification algorithm. The setup,
keypair, and hash functions are the same as in our description of the original
BN protocol in Section 2.1.

11

Sign(sk,msg): Phase 1: Committing to the seeds and views of the parties.

1: Sample a random salt salt $← {0, 1}2κ.
2: for each parallel repetition e do
3: Sample a root seed: seede

$← {0, 1}κ.
4: Derive seed(1)

e , . . . , seed(N)
e as leaves of binary tree from seede.

5: for each party i do
6: Commit to seed: com(i)

e ← Commit(salt, e, i, seed(i)
e).

7: Expand random tape: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e)
8: Sample witness share: sk(i)

e ← Sample(tape(i)
e).

9: Compute witness offset: ∆ske ← sk−
∑

i
sk(i)
e .

10: Adjust first share: sk(1)
e ← sk(1)

e + ∆ske.
11: for each gate g in C with index ` do
12: if g is an addition gate with inputs (x, y) then
13: The parties locally compute the output share z(i) = x(i) + y(i)

14: if g is a multiplication gate with inputs (xe,`, ye,`) then
15: Compute output shares z(i)

e,` = Sample(tape(i)
e).

16: Compute offset ∆ze,` = xe,` · ye,` −
∑N

i=1 z
(i)
e,`.

17: Adjust first share z(1)
e,` ← z

(1)
e,` + ∆ze,`.

18: For each party i, set a(i)
e,` ← Sample(tape(i)

e)
19: Compute ae,` =

∑N

i=1 a
(i)
e,`

20: Set be,` = ye,`

21: Compute c(i)e ← Sample(tape(i)
e)

22: Compute offset ∆ce =
(∑|C|

`=1 ae,` · be,`
)
− ce.

23: Adjust first share: c(1)
e ← c

(1)
e + ∆ce

24: Let ct(i)
e be the output shares of online simulation.

25: Set σ1 ← (salt, ((com(i)
e , ct(i)

e)i∈[N],∆ske,∆ce, (∆ze,`)`∈[C])e∈[τ].
Phase 2: Challenging the checking protocol.
1: Compute challenge hash: h1 ← H1(salt,msg, σ1).
2: Expand hash: ((εe,`)`∈[C])e∈[τ] ← Expand(h1) where εe,` ∈ F.

Phase 3: Commit to simulation of the checking protocol.
1: for each repetition e do

2:

For the set of multiplication gates in C, simulate the triple checking
protocol as defined in §2.6 for all parties with challenge (εe,`)`∈[C].
The inputs are (x(i)

e,`, y
(i)
e,`, z

(i)
e,`, a

(i)
e,`, b

(i)
e,`, c

(i)
e), and let α(i)

e,` and v
(i)
e

be the broadcast values.
3: Set σ2 ← (salt, (((α(i)

e,`)`∈[C], v
(i)
e)i∈[N])e∈[τ].

Phase 4: Challenging the views of the MPC protocol.
1: Compute challenge hash: h2 ← H2(h1, σ2).
2: Expand hash: (̄ie)e∈[τ] ← Expand(h2) where īe ∈ [N].

Phase 5: Opening the views of the MPC and checking protocols.
1: for each repetition e do
2: seedse ← {log2(N) nodes needed to compute seede,i for i ∈ [N] \ {̄ie}}.
3: Output σ ← (salt, h1, h2, (seedse, com(̄ie)

e ,∆ske,∆ce, (∆ze,`, α(̄ie)
e,`)`∈[C])e∈[τ]).

Figure 2: BN++ Signature Scheme.

12

Verify(pk,msg, σ) :
1: Parse σ as (salt, h1, h2, (seedse, com(̄ie)

e ,∆ske,∆ce, (∆ze,`, α(̄ie)
e,`)`∈[C])e∈[τ]).

2: Expand hashes: (εe,`)e∈[τ],`∈[C] ← Expand(h1), and (̄ie)e∈[τ] ← Expand(h2).
3: for each repetition e do
4: Use seedse to recompute seed(i)

e for i ∈ [N] \ īe.
5: for each party i ∈ [N] \ īe do
6: Recompute com(i)

e ← Commit(salt, e, i, seed(i)
e),

7: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e), and
8: sk(i)

e ← Sample(tape(i)
e).

9: if i = 1 then adjust first share: sk(i)
e ← sk(i)

e + ∆ske.
10: for each gate g in C with index ` do
11: if g is an addition gate with inputs (x(i), y(i)) then
12: locally compute the output share z(i) = x(i) + y(i)

13: if g is a multiplication gate, with inputs (x(i)
e,`, y

(i)
e,`) then

14: Compute output share z(i)
e,` = Sample(tape(i)

e).
15: if i = 1 then adjust first share z(i)

e,` ← z
(i)
e,` + ∆ze,`.

16: Set a(i)
e,` ← Sample(tape(i)

e), and b(i)e,` = y
(i)
e,`

17: Set c(i)e ← Sample(tape(i)
e)

18: if i = 1 then adjust first share c(i)e ← c
(i)
e + ∆ce.

19: Let ct(i)
e be party i’s share of the circuit output.

20: Compute ct(īe)
e = ct−

∑
i 6=īe ct(i)

e

21: Set σ1 ← (salt, ((com(i)
e , ct(i)

e)i∈[N],∆ske,∆ce, (∆ze,`)`∈[C])e∈[τ].
22: Set h′1 = H1(salt,msg, σ1)
23: for each repetition e do
24: for each party i ∈ [N] \ īe do

25:

For the set of multiplication gates in C, simulate the triple
verification procedure as defined in §2.6 for party i with chal-
lenge (εe,`)`∈[C]. The inputs are (x(i)

e,`, y
(i)
e,`, z

(i)
e,`, a

(i)
e,`, b

(i)
e,`, c

(i)
e),

and let α(i)
e,` and v

(i)
e be the broadcast values.

26: Compute v(īe)
e = 0−

∑
i6=īe v

(i)
e

27: Set σ2 ← (salt, (((α(i)
e,`)`∈[C], v

(i)
e)i∈[N])e∈[τ].

28: Set h′2 = H2(h1, σ2).
29: Output accept iff h′1

?= h1 and h′2
?= h2.

Figure 3: BN++ Verification algorithm.

13

3 Handling Small Field Sizes Efficiently
The BN++ protocol performs well for circuits defined over large fields. For exam-
ple, the Rain block cipher is the basis for the Rainier signature scheme [DKR+21],
and its nonlinear operations are defined over GF(2128). The proof size of BN++
with Rain is slightly smaller than Rainier, and the implementation of BN++ is
arguably simpler, as it does not require polynomial interpolation or arithmetic,
as in Rainier.

However, for Picnic and the LowMC cipher, we have 516 binary AND gates,
and signatures with BN++ are estimated to be about 78 KB. This compares to
12.5 KB for the Picnic3 parameters (based on the [KKW18] proof system).

Clearly the BN++ protocol is not competitive with existing solutions when
the field size is small. In this section we address this limitation.

3.1 Simple Lifting
For BN++, we can prove circuits over small fields by first lifting them to a
larger field, as was done in Banquet [BdK+21] and Limbo [dSGOT21]. This
lifting takes a value in F and lifts it to an extension field K using an injective
homomorphism. In particular, we execute the circuit over F, getting the shares
of the multiplication gates, and then lift these shares to K for the multiplication
checking protocol. (The parties can lift their shares using only local operations.)
The challenge ε must be in K for the soundness analysis, which means that a`
must also be in K to ensure that x` is hidden in the computation of the public
value α`. Because of this, the dot product triple (a,b, c) is also in K. Recall that
in BN++ we must communicate (∆ze,`, α(̄i)

e,`) once per gate and ∆ce once per
repetition. From the discussion above, ∆ze,` ∈ F, α(̄i)

e,` and ∆ce are in K.
Then the proof/signature size formula given in Eq. (1) has M(C) = C(log2(|F|)+

log2(|K|)) + log2(|K|). We give some examples when N = 256, in Table 3 to
illustrate the size improvements possible with this lifting strategy.

The improvements in the table make sense intuitively, when looking at the
“rate” of the lift, a measure of the overhead. In binary LowMC we lift each bit
to 8 bits, for a rate of 8, while in the GF(23) case each group of 3 bits are lifted
to one GF(23) value, for a rate of 1, but the three bit field is still quite small.
When we lift from GF(23) to GF(212) (rate 4) we get the best signature size,
about 2 KB more than Picnic3.

Binary LowMC (516 AND gates): 27.2 KB when lifting to K = GF(28)
Binary LowMC (516 AND gates): 21.1 KB when lifting to K = GF(28)
GF(23) LowMC (172 mults): 23.9 KB without lifting
GF(23) LowMC (172 mults): 14.5 KB when lifting to K = GF(212)

Table 3: Proof size estimates for LowMC with the simple lifting protocol, with
N = 256 parties. In the second row, we apply the optimization in Appendix B.2.

14

3.2 Helium: Lifting with RMFEs
In the previous section, with binary LowMC, we took one bit and lifted it to an
8-bit field, then did the checking protocol in the extension field, and called the
rate of this lift 8, since 8 bits must be communicated in place of one. This helps
soundness, but the lift is somewhat trivial, and resulting rate is high. A natural
question is whether we can do better.

A reverse multiplication friendly embedding allows us to encode multiple bits
into a field extension with better rate. For example, the (3, 5)2–RMFE allows us
to lift a batch of 3 elements of F2 into F25 , with rate 5/3 = 1.6 and there exist
RMFEs with larger base and extension fields. Once we have encoded groups
of bits (x1, x2, x3) and (y1, y2, y3) we can multiply the encoded values in F25 ,
then decode to get the three ANDs (x1 · y1, x2 · y2, x3 · y3). Importantly, the
encoding and decoding operations are linear, meaning the parties can compute
the maps on their shares locally to obtain shares of the encoded value. There
are somewhat strict limitations on the arithmetic operations one can perform on
encoded values such that the decoded values are correct, but we show that the
sacrificing check is possible.

3.2.1 RMFE Preliminaries

We start with a definition, adapted from [CCXY18].

Definition 4. Let k and m be positive integers and q be a prime power that
defines the field Fq. Define a pair of mappings:

• φ : (Fq)k → Fqm that maps vectors over the base field to the extension
field, and

• ψ : Fqm → (Fq)k which does the reverse.

We say that (φ, ψ) is a reverse multiplication friendly embedding, denoted
(k,m)q–RMFE, if

1. φ and ψ are Fq-linear, and

2. For any pair of vectors x,y ∈ (Fq)k, we have

x ∗ y = ψ(φ(x) · φ(y))

where ∗ denotes component-wise multiplication.

The rate of the RMFE is m/k. When the sizes are clear from the context, we
refer to Fq as F and Fqm as K, so that φ : Fk → K and ψ : K→ Fk.

Concrete RMFEs For Picnic using LowMC, our goal will be to lift elements
of GF(23) to a larger field (after representing the LowMC S-box as a GF(23)
multiplication, see Section 4.1.). In [CCXY18, Lemma 4] a construction of RMFE
based on interpolation codes is given which gives us the best (currently) known
choice for our application: we have a (9, 17)23–RMFE with rate 1.88. Other
options exist, e.g., starting from F2, but the rates of other constructions we
investigated are higher (and thus led to larger signature sizes). A construction
with improved rate and similarly sized K would immediately give shorter signa-
tures, e.g., rate 1.6 would reduce signature sizes by about 1 KB. Unfortunately

15

[CCXY18, Lemma 4] is optimal4 so there is no better RMFE from GF(23). In
Section 4.2 we show some of the concrete RMFEs we investigated, along with
resulting signature size estimates.

In terms of implementation, once the RMFE parameters are fixed, we can
derive matrix representations for φ and ψ, then encoding and decoding can each
be done with a matrix multiplication.

3.2.2 The Helium Proof Protocol: Multiplication Checking with RM-
FEs in BN++

Recall the multiplication checking protocol of BN++. The input is (x`, y`, z`)C`=1
such that x` · y` = z`, and ((a`)C`=1, c) such that c =

∑
a` · y`. All of these

elements are over F, and assume for the moment that the number of triples is a
multiple of k, so that we have C/k groups of elements to map to the extension
field K.

Prover operations The main change when lifting with an RMFE is how
the prover prepares the inputs to the checking protocol. Once the inputs are
prepared, the protocol happens over the extension field K. We try to use capital
letter variables for elements in K and lower case variables for elements in F.

1. The prover executes the circuit normally over F, to obtain the multiplication
gate inputs/outputs (x`, y`, z`) for ` = 1, . . . , C. We group these into vectors
from Fk, denoted (xj ,yj , zj) for j = 1, . . . , C/k.

2. Then the prover computes Xj = φ(xj) and Yj = φ(yj), then Zj = Xj · Yj .
The parties have shares of xj and yj and can compute shares of Xj and
Yj on their own because φ is linear. In BN++ the prover provides ∆zj
in order to inject the result of the multiplication gate, but in Helium the
prover will inject shares of Zj . More precisely, the prover samples shares
of Zj from the random tapes, and adjusts the first party’s share with
∆Zj = Zj−

∑N
i=1 Z

(i)
j . From their shares of Zj the parties can obtain their

shares of zj as ψ(Z(i)
j), which they need for the computation of the circuit.

3. The prover then chooses Aj at random from K, sets Bj = Yj then computes
S =

∑
AjYj and injects the sharing of S, by computing ∆S ∈ K (as she

did for ∆Z).

Now all inputs for dot-product check are in K, and the protocol proceeds as
usual but the computation of A = εjXj +Aj and V happen over K:

1. The verifier provides a random challenge ε ∈ KC/k.
2. The parties locally set A

(i)
j = εj ·X(i)

j +A
(i)
j .

3. The parties open (A1, . . . ,AC) by broadcasting their shares.
4. Party i locally computes

V (i) = −S(i) +
C/k∑
j=1

(
αjY

(i)
j − εjZ(i)

j

)
4Personal communication from Ignacio Cascudo; co-author of [CCXY18].

16

5. The parties open V by broadcasting V (i) and output acc iff V = 0

Lemma 5. If the secret shared input (xi, yi, zi)Ci=1 contains an incorrect multi-
plication triple, or the shares of ((Ai, Yi)C/ki=1 , S) form an incorrect dot product,
then the parties output acc in the sub-protocol with probability at most 1/|K|.

Proof. Lemma 2 ensures that (Xj , Yj , Zj) are all valid multiplication triples in
K, and that (Aj , Yj , S) is a valid dot product in K with probability 1/|K|. We
must show that this implies (xi, yi, zi) are all valid multiplication triples in F.

If (X,Y, Z) is a valid multiplication triple in K, whereX = φ(x) and Y = φ(y)
then ψ(X · Y) = x ∗ y = z by the RMFE property of the maps (φ, ψ) required
by Definition 4. Thus given that (X,Y, Z) are a valid triple in K ensures that
(x,y, z) are valid in F with probability 1, so the result follows.

Note that it is important to compute (shares of) z with ψ as we do in the
protocol, since it is not guaranteed that that φ(x) · φ(y) = φ(z) even though
z = x ∗ y. This is one of the limitations of RMFEs.

Batching inputs to RMFE encoding When C/k does not divide evenly,
we encode dC/ke groups of elements from F where the last group is padded
with zeros. In the interactive MPC setting, it can be difficult to batch all C
multiplications arbitrarily, since only some triples may be ready at a given time.
For example consider a block cipher like AES or LowMC: the multiplication
gate inputs at round i depend on the multiplication gate outputs of round i− 1.
Fortunately in the MPCitH setting, the prover can first compute the entire circuit
to get all triples. Then the checking protocol is run separately on the entire
batch, giving full flexibility over how the RMFE encoding is done. In MPCitH we
could even potentially have a (C,m)q–RMFE, so that all multiplication triples
are encoded as a single batch into one very large field element.

Proof size For a circuit defined over F with C multiplication gates, using an
RMFE from Fk → K, the size of a Helium proof is given by the formula:

3κ+ τ · (2κ+ κ · dlog2(N)e+ 2 dC/ke · (log2(|K|)) + log2(|K|) + κ) .

We must communicate (∆Ze,j ,A (̄i)
e,j) for each of the C/k batched multiplication

gates, and ∆Se once per repetition.

3.2.3 Parameter Selection

In this section we describe how to choose parameters to instantiate secure non-
interactive proofs with Helium. Since the NI proof is a canonical 5-round protocol
constructed with the Fiat-Shamir transform, we can apply the existing analysis
in [KZ20, §4.1], similar to Banquet [BdK+21] (though it is seven rounds) and
Rainier [DKR+21].

We provide an attack strategy that minimizes the attack cost, where we cheat
τ1 times for the first challenge and τ2 = τ − τ1 times for the second challenge.
To cheat in the first challenge the attacker must pass the multiplication check,
and this happens with probability 1/|K|, by Lemma 5. For the remaining τ2

17

instances he must cheat in the MPC computation of one party, and hope that
the selected party remains unopened.

The cost of the attack is given by

Cost(κ,N, τ) = 1
SPMF(τ, τ1, 1/K) +Nτ2 ,

where SPMF is the summed probability mass function,

SPMF(n, k, p) =
n∑

k′=k

(
n

k′

)
pk

′
(1− p)n−k

′
,

where each term gives the probability of guessing correctly in k′ of τ independent
trials, each with success probability p. The choice of τ1 that minimizes the attack
cost gives the optimal attack

τ1 = arg min
0≤τ ′≤τ

1
SPMF(τ, τ ′, 1/K) +Nτ−τ ′

.

To select secure parameters, we fix κ and N and K, then increase τ until the
cost of the best attack exceeds 2κ. A script implementing this formula was used
to generate the concrete parameters given in the next section.

As with many MPCitH protocols, τ is the parameter that affects proof
sizes the most and computational cost is most sensitive to the choice of N .
Once K is moderately large (easily achieved due to the RMFE lift), N becomes
the bottleneck for soundness, and τ decreases only as N increases (and the
relationship is exponential). Thus a size-speed tradeoff curve is present in Helium,
similar to other MPCitH proofs, where smaller signatures have large N and are
slower to create and verify, and larger signatures may be much faster.

4 Picnic4
This section describes how the Helium proof system can be used to instantiate a
fourth version of the Picnic signature scheme. Here C is the LowMC block cipher.
We start by describing an alternate representation of the LowMC S-box, then
give options for concrete parameter sizes.

4.1 Alternative Representation of the LowMC S-box
The 3-bit S-box in LowMC is defined (over F2) as

S(a, b, c) = (a+ bc, a+ b+ ac, a+ b+ c+ ab) . (2)

We now show an alternate representation of the S-box that uses a single multi-
plication in F23 ∼= F2[X]/(X3 +X + 1) instead of 3 multiplications in F2.

It can easily verified that Equation 2 and Algorithm 1 are equivalent by
enumeration of the eight possible inputs. Furthermore, and importantly for its
use in an MPC protocol using linear secret sharing, all of the operations except
the multiplication are linear and therefore do not require any communication
between the parties.

18

Algorithm 1 LowMC S-box with a multiplication in F23 ∼= F2[X]/(X3 +X+1).
Input: a, b, c
Output: S(a, b, c)
t1 ← aX2 + bX + c . interpret as element of F23

t2 ← (a+ b)X2 + aX + c . interpret as element of F23

t← t1 · t2 . multiplication in F23

dX2 + eX + f ← t . extract coefficients
return (d, d+ e, f) . final linear transformation

The benefit of this representation is that we can use the checking protocol over
the field F23 rather than F2 which increases the soundness of the multiplication
check. In this sense we get a “free lift” to the larger field, when compared to
protocols like Banquet [BdK+21] and Limbo [dSGOT21] which must lift inputs
of multiplication gates to larger fields by essentially padding them (as discussed
in Section 3.1).

Additionally, when we use an RMFE in Helium to further increase the field
size (and soundness), the constructions available when the starting field is F23

have significantly better rate, about 1.88, than when the starting field is F2,
where the best known rate is about 2.83 (when K is large enough to be useful in
our application).

4.2 Concrete Parameters and Signature Size
The remaining important parameter choice is the RMFE. We estimated signature
sizes with multiple RMFE constructions, and show some of the options in Table 4
for the L1 security level with the full S-box layer LowMC parameters. The
construction with the lowest rate is [CCXY18, Lemma 4], but the size of K
is somewhat limited. The construction gives us a (k, 2k − 1)q–RMFE, with
1 ≤ k ≤ q + 1. So when q = 2 (binary LowMC) we get the (3, 5)2–RMFE
mentioned above, and K = F25 . The rate is very small but so is K, which ends
up being a bottleneck, and signatures are about 20 KB and do not change much
in size as N is increased or decreased.

We can then use the concatenation construction of [CCXY18, Lemma 5] to
get larger K, but at the expense of higher rate. With the (30, 95)2–RMFE from
[CCXY18, Remark 7] we get about 10 KB signatures with rate 3.16 and since
K is quite large, we can increase N to 1626 to decrease signatures to 8.6KB.
Another option from the concatenation construction is (18, 51)2–RMFE with
rate 2.8 but smaller K. This ends up being slightly better than the rate 3.16
option, and K fits in a 64-bit word.

Next we have the RMFE options with the GF(23) representation of the S-box.
The [CCXY18, Lemma 4] construction can achieve larger K when F is larger
and going from 2 to 8 lets us jump from 5 bits to 51 bits and keeps the rate low
at 1.89. The second half of Table 4 shows the options for multiple choices of N .

We also considered using the concatenation construction with q = 23 in order
to have K be larger than 51 bits, but the increased rate (2.7 or greater) gave
strictly larger signatures.

Finally, we note that with an additional circuit-specific optimization, see
Appendix B.2, the sizes in the first half of Table 4 can be reduced slightly, but

19

RMFE Rate F K dC/ke N τ Size (KB)
(3, 5)2 1.6 F2 F25 172 255 49 20.07
(30, 95)2 3.16 F2 F295 18 256 17 10.51
(30, 95)2 3.16 F2 F295 18 1626 13 8.61
(18, 51)2 2.83 F2 F251 29 256 18 10.25
(18, 51)2 2.83 F2 F251 29 1626 14 8.58
(9, 17)8 1.89 F23 F251 20 57 24 9.87
(9, 17)8 1.89 F23 F251 20 256 18 7.99
(9, 17)8 1.89 F23 F251 20 371 17 7.82
(9, 17)8 1.89 F23 F251 20 921 15 7.15
(9, 17)8 1.89 F23 F251 20 1626 14 6.91
(9, 17)8 1.89 F23 F251 20 216 10 5.76

Table 4: Parameters for different RMFE choices and parameters for Picnic
signatures implemented with the Helium proof system and the full S-box layer
LowMC parameters (as used in Picnic3) which requires 516 AND gates, or 172
GF(23) multiplies.

the parameters in the second half of the table still give shorter signatures.

Tentative Picnic4 Parameter Sets We recommend the (N, τ) = (256, 18)
parameter set with 7987 byte signatures for L1 (the highlighted row in Tables 4
and 5). Using LowMC with the partial S-box layer increases the size slightly
to 8658 bytes. Until we have an optimized implementation it is hard to say
what performance will be like with different choices of N . Optimistically it
will be similar to Rainier [DKR+21, Table 3, page 47], and N = 256 will have
Picnic3-like performance. Realistically the LowMC computations will probably
cost more than Rain, and the performance will be somewhat worse. Table 5
shows the speed and sizes of the current implementation with multiple choices
of N .

The L3 and L5 parameter choices require further investigation. One possibility
for L5 uses N = 256, τ = 37 and the RMFE in the highlighted row to get 31.347
KB signatures, an improvement over the 48.4 KB for Picnic3-L5.

4.3 Picnic4 Implementation
Our implementation is preliminary: we have an unoptimized C++ implementation
demonstrating the correctness of the scheme and confirming the signature sizes.
Some benchmarks from the current implementation are given in Table 5.

4.4 Signature Scheme Security
Informally, the signature scheme’s security analysis (in the random oracle model
(ROM)) will follow Rainier’s very closely, since they are both 5-round protocols
with the same structure, the main difference being the way that Helium checks
multiplication triples. This difference is largely covered by Lemma 2 and the
simulation-based argument for N − 1 privacy of the checking protocol following
it.

20

The Rainier analysis in turn uses a similar strategy as in the Picnic3/KKW
security proof. Security reduces to the difficulty of inverting the OWF used
for key generation. The reduction is given a OWF output as input. Signatures
can be simulated without the corresponding private key, in the standard way
(for schemes based on the Fiat-Shamir transform). The reduction first chooses
a random challenge, then programs the ROM so that signature verification
passes on the simulated signature. Then, once a valid signature is output by the
adversary, by the soundness of the proof protocol, the hash queries for one of the
parallel repetitions must have sufficient information to extract the secret key. In
particular, since the per-party seeds are committed to using a hash function, the
reduction obtains the seeds from the list of RO queries made by the adversary.
From the seeds it is straightforward to compute the key shares of all N parties
and recover the key.

As for the QROM, there are generic results by Don et al. [DFM20] for
multi-round Fiat-Shamir proofs that might apply directly (or be adapted) to
Helium. But since Helium is a commit-and-open proof, the QROM analogue of
the strategy just described for the ROM (reading the secret key shares from
the RO query transcript), recently developed in [DFMS21, §5] for Σ-protocols,
seems like the most direct approach to a QROM analysis of Helium (assuming
[DFMS21] can be generalized from three to five round protocols).

5 Conclusion
Acknowledgments We thank Jonathan Katz for helpful comments on an
earlier draft of this work, Christian Rechberger for helpful discussions, and
Ignacio Cascudo for answering our questions about RMFEs.

References
[BdK+21] Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela

Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and fast
signatures from AES. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May
2021.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit random-
ization. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of
LNCS, pages 420–432. Springer, Heidelberg, August 1992.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to lattice-
based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume
12110 of LNCS, pages 495–526. Springer, Heidelberg, May 2020.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan.
Amortized complexity of information-theoretically secure MPC re-
visited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426.
Springer, Heidelberg, August 2018.

21

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
1825–1842. ACM Press, October / November 2017.

[dDOS19] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini,
and Nigel P. Smart. BBQ: Using AES in picnic signatures. In Ken-
neth G. Paterson and Douglas Stebila, editors, SAC 2019, volume
11959 of LNCS, pages 669–692. Springer, Heidelberg, August 2019.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-
reprogram technique 2.0: Multi-round fiat-shamir and more. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 602–631. Springer, Heidel-
berg, August 2020.

[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Online-extractability in the quantum random-oracle model. Cryptol-
ogy ePrint Archive, Report 2021/280, 2021. https://ia.cr/2021/
280.

[DKR+21] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus
Schofnegger, and Greg Zaverucha. Shorter signatures based on tailor-
made minimalist symmetric-key crypto. IACR Cryptol. ePrint Arch.
Report 2021/692, 2021. https://eprint.iacr.org/2021/692.

[dSGOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan
Tanguy. Limbo: Efficient zero-knowledge mpcith-based arguments.
IACR Cryptol. ePrint Arch. Report 2021/215, 2021. https://
eprint.iacr.org/2021/215.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM
Press, October 2018.

[KZ20] Daniel Kales and Greg Zaverucha. An attack on some signa-
ture schemes constructed from five-pass identification schemes. In
Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS
20, volume 12579 of LNCS, pages 3–22. Springer, Heidelberg, De-
cember 2020.

22

https://ia.cr/2021/280
https://ia.cr/2021/280
https://eprint.iacr.org/2021/692
https://eprint.iacr.org/2021/215
https://eprint.iacr.org/2021/215

[ZCD+20] Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder,
Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel
Slamanig, Jonathan Katz, Xiao Wang, Vladmir Kolesnikov, and
Daniel Kales. Picnic. Technical report, National Institute of Stan-
dards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

23

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

N τ Sign Verify Size
16 34 3.98 3.84 12 825
57 24 7.34 7.02 9 849
107 21 11.22 10.75 8 966
256 18 21.60 21.20 7 987
1626 14 98.36 98.77 6 906

Picnic1-full 1.0 0.8 30 821
Picnic3 5.17 3.96 12 595

Table 5: Benchmarks for Picnic4 with various choices of N (top half) and current
versions of Picnic (lower half) for reference. Times are in ms on an Intel Xeon
W-1233 @ 3.6 GHz and sizes are in bytes. All Picnic instances use the LowMC
parameters with a full S-box layer.

A Some Preliminary Benchmarks
In Table 5 we provide some preliminary benchmarks showing the various sizes
and running times of Picnic4 when the number of parties N varies from 16 to
1626. As mentioned earlier, we are leaning towards N = 256 but some of the
options with smaller N still significantly improve on the sizes of Picnic1 and
Picnic3, while being much faster. All instances in the table use the LowMC
parameters with a full S-box layer and are at security level L1.

B Other Optimizations
In this section we describe some optimizations that we passed over in the
Picnic/LowMC application, but that might be useful in other contexts.

B.1 Optimization: Multiplications with Public Outputs
In the BN++ protocol, we are communicating two elements per gate, (∆z, α).
When z is a public value, then ∆z does not need to be sent. We aren’t aware of
many circuits where multiplication outputs are public. One example is an RSA
modulus.

B.2 Optimization: Repeated Multipliers
When some of the multiplication triples in the batch to be verified have the
same multiplier, e.g., (x1, y, z1), (x2, y, z2) we can batch the α value in the
multiplication checking protocol. Instead of computing α1 = ε1x1 + a1 and
α2 = ε2x2 + a2 and broadcasting shares of both α1 and α2, we can instead
compute α = ε1x1 + ε2x2 + a, broadcast it and then compute

v = α · y − ε1 · z1 − ε2 · z2 − c

where c = y · a (instead of c = y1a1 + y2a2 as in §2.6).
Recall that the LowMC S-box over F2 is computed

S(a, b, c) = (a+ bc, a+ b+ ac, a+ b+ c+ ab) .

24

The input bit c is the multiplier in two of the multiplications, meaning we only
need two α values per S-box rather than three. The Helium proof size for binary
LowMC can be reduced to

3κ+ τ · (2κ+ κ · dlog2(N)e+ M(C) + log2(|K|) + κ) .

where M(C) = 5
3 dC/ke·(log2(|K|)). For the parameters with the (18, 51)2–RMFE

with N = 256 and τ = 18 the signature size goes from 10.25 KB to 9.15 KB.

25

	Introduction
	Contributions
	Status of this work
	Notation

	Improving the BN Zero-Knowledge Proof
	The Baum-Nof Zero-Knowledge Proof
	Optimized Proof Size Overview
	Optimization 1: Removing the Output Broadcast
	Optimization 2: Removing the Final Checking Protocol Broadcast
	Optimization 3: Removing the Broadcast of .
	Optimization 4: Dot-Product Checking
	BN++: New Protocol with all Optimizations

	Handling Small Field Sizes Efficiently
	Simple Lifting
	Helium: Lifting with RMFEs
	RMFE Preliminaries
	The Helium Proof Protocol: Multiplication Checking with RMFEs in BN++
	Parameter Selection

	Picnic4
	Alternative Representation of the LowMC S-box
	Concrete Parameters and Signature Size
	Picnic4 Implementation
	Signature Scheme Security

	Conclusion
	Some Preliminary Benchmarks
	Other Optimizations
	Optimization: Multiplications with Public Outputs
	Optimization: Repeated Multipliers

