pqsigRM Practical Key Recovery Provisional Outline

Pierre Briaud, Maxime Bros, Ray PerIner, Daniel Smith-Tone

Key Observation
 (Confirmed Via Experiment Details to Follow)

- Observation: The hull is a subcode of:

$$
\left(\begin{array}{cccc}
G(r, m-2) \sigma_{1}^{p} & G(r, m-2) \sigma_{1}^{p} & G(r, m-2) \sigma_{1}^{p} & G(r, m-2) \sigma_{1}^{p} \\
0 & G(r-1, m-2) & 0 & G(r-1, m-2) \\
0 & 0 & G(r-1, m-2) & G(r-1, m-2) \\
0 & 0 & 0 & 1 \ldots 1
\end{array}\right)
$$

- Top 3 rows are orthogonal to any vector consisting of the same 2^{m-2} bits repeated 4 times
- $4^{\text {th }}$ row is orthogonal to any vector with even Hamming weight on the last 2^{m-2} bits
- Bottom row is orthogonal to half of all vectors
- Consequence: There are a lot of weight 8 codewords in the dual code of the hull!
- These codewords have matching values on columns that are 2^{m-2} bits apart in the private key
- Finding these codewords is cheap and reveals a lot of structure from the private key.

Observation 2

- Without the $k_{a p p}=2$ random rows added to the public code, the hull has the following subcode:

$$
(0 \quad G(r-1, m-2) \quad G(r-1, m-2) \quad 0)
$$

- Lots of weight 128 codewords in the above code
- Only 4 times fewer with the appended rows
- Confirmed Via Experiment

Attack in Detail Step 1: Find matched sets of 4

- Look for a weight-8 codeword in the dual of the hull
- Look for another weight-8 codeword with weight 4 outside the support of the $1^{\text {st }}$ weight-8 codeword
- The intersection is a matched set, as are the parts of each weight- 8 codeword that don't intersect.
- Repeat until somewhere between 871 and 2048 matched sets are found
- When enough matched sets have been found, can recover the dimension 1484 subcode which (unpermuted) repeats every 2048 bits
- Confirmed via experiment. We used 1768 matched sets, but that's probably more than we needed
- Important note: There are two classes of matched sets
- Class 0: The single codeword added to the private key from the Dual code has even weight when restricted to the matched set
- Class 1: The single codeword added to the private key from the Dual code has odd weight when restricted to the matched set

Attack in Detail Step 2: Recover
 $(G(r, m-2) \quad G(r, m-2) \quad G(r, m-2) \quad G(r, m-2))$
 Using Chizov-Borodin https://eprint.iacr.org/2013/287

- Start with the subcode of the public code with all bits equal on matched sets; this should reveal all 2048 matched sets (i.e. all the sets of 4 identical columns in a generator matrix for this subcode)
- Apply (and remember) a permutation to get each matched set to columns $i, i+2048, i+4096, i+6144$
- Restrict attention to the first 2048 columns: These should be a large subcode of $R M(6,11)$ up to permutation of the columns
- Adjoin the all 1s codeword and take the hull to get permuted $R M(4,11)$ - Is this the whole $R M(4,11)$ or is it 1 dimension smaller?
- Take the square code to get permuted $\mathrm{RM}(8,11)$
- Take the dual code to get permuted RM $(2,11)$ - note this has dimension only 67
- Look for a minimum weight (weight 512) codeword
- Look for another minimum weight codeword with weight 256 outside the support of the first codeword (The intersection should be in permuted $\operatorname{RM}(3,11)$, but not permuted $\operatorname{RM}(2,11)$)
- Get enough codewords from permuted $R M(3,11)$ so we can compute permuted $R M(3,11)$ * permuted RM $(6,11)=$ permuted $\operatorname{RM}(9,11)$
- Take the dual code to get permuted $\mathrm{RM}(1,11)$

Step 2 continued

- Once you have permuted RM $(1,11)$ take an 11×2048 matrix whose rows are linearly independent codewords with at least one zero (i.e. 1024 zeroes)
- Permute the columns of the matrix, if you take the columns as binary expansions of integers, they count monotonically from 0 to 2047, i.e. so the matrix looks like:

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & & 1 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 1 & 1 & \cdots & 1 \\
0 & 1 & 0 & 1 & & 1
\end{array}\right)
$$

- Remember the permutation and apply it to the other 3 groups of 2048 columns

Step 3: Recover σ_{1}^{p} and:
$(0 \quad G(r-1, m-2) \quad G(r-1, m-2) \quad 0)$

- Use modified ISD to look for minimum weight codewords from
($0 \quad G(5,11) \quad G(5,11) \quad 0)$ in the hull of the public code (see Observation 2)
- Guess zeros in matched columns outside the support of a minimum weight codeword in $\left(G(5,11) \sigma_{1}^{p} \quad G(5,11) \sigma_{1}^{p} G(5,11) \sigma_{1}^{p} \quad G(5,11) \sigma_{1}^{p}\right)$, which can be constructed using the information extracted in step 2
- Each codeword helps identify
- Matched sets of 4 with two 1 s (blocks 2 and 3) and two 0s (blocks 1 and 4)
- Can easily use shared non-support to get minimum weight codeword in $\left(\begin{array}{llll}0 & 0 & G(r-1, m-2) & G(r-1, m-2)\end{array}\right)$ or and partially separating blocks 2 and 3 .
- Codewords with exactly 1 bit in each block outside the support of the minimum weight codeword from $\left(G(5,11) \sigma_{1}^{p} \quad G(5,11) \sigma_{1}^{p} \quad G(5,11) \sigma_{1}^{p} \quad G(5,11) \sigma_{1}^{p}\right)$ helps identify:
- One of the bits moved by σ_{1}^{p}

Step 4: Recover σ_{2}^{p} and:

$$
(0 \quad 0 \quad 0 \quad G(r-2, m-2))
$$

- Identify codewords from public code in ($\left.\begin{array}{llll}0 & 0 & 0 & G(r-2, m-2) \sigma_{2}^{p}\end{array}\right)$ by forcing columns identified as block 1,2 or 3 to 0 .
- Run Chizov-Borodin (i.e. the same process as step 2) to get a permuted version of $\left(\begin{array}{llll}0 & 0 & 0 & G(1, m-2) \sigma_{2}^{p}\end{array}\right)$
- Rather than picking 11 linearly independent codewords from $\left(\begin{array}{llll}0 & 0 & 0 & G(1, m-2) \sigma_{2}^{p}\end{array}\right)$ at random, aim for $\times 0^{\prime}, \times 1^{\prime}, \ldots \times 11^{\prime}$ with maximum support overlap with $\times 0, \times 1, \times 2 \ldots \times 11$ in ($\left.0 \begin{array}{llll}0 & 0 & G(1, m-2)\end{array}\right)$ as identified in step 3 . The process to do this is basically ISD.
- If successful, the column permutation that recovers
$\left(\begin{array}{llll}0 & 0 & 0 & \left.G(1, m-2) \sigma_{2}^{p}\right) \text { should differ from the one that recovers }\end{array}\right.$
(0 $0000 \quad G(1, m-2)$) at only 561 columns.

