
1 Requirements and Concepts

Throughout this clause, the names of template parameters are used to express type requirements, and the concepts are

designed to support type checking at compile time. In order to make the concepts more concise, some constraints related

to the Ranges TS are not listed, such as the concept template CopyConstructible and the concept template

MoveConstructible.

1.1 Binary Semaphores

1.1.1 Intention

This concept is an abstraction for the Ad-hoc synchronizations required in the “Sync Concurrent Invoke” model. Typical

implementations may have one or more of the following mechanisms:

- simply use “std::promise<void>” to implement, as mentioned earlier, or

- use the “Spinlock” if executions are likely to be blocked for only short periods, or

- use the Mutexes together with the Condition Variables to implement, or

- use the primitives supported by specific platforms, such as the “Futex” in modern Linux, the “Semaphore”

defined in the POSIX standard and the “Event” in Windows, or

- have “work-stealing” strategy that may execute other unrelated tasks while waiting.

1.1.2 BinarySemaphore requirements

A type BS meets the BinarySemaphore requirements if the following expressions are well-formed and have the

specified semantics (bs denotes a value of type BS).

bs.wait()

Effects: Blocks the calling thread until the permit is released.

Return type: void

Synchronization: Prior release() operations shall synchronize with this operation.

bs.release()

Effects: Release the permit.

Return type: void

Synchronization: This operation synchronizes with subsequent wait() operations.

1.1.3 Concept template BinarySemaphore

namespace requirements {

template <class T>

concept bool BinarySemaphore() {

 return requires(T semaphore) {

 { semaphore.wait() };

 { semaphore.release() };

 };

}

}

1.2 Atomic Counters

1.2.1 Intention

This concept is an abstraction for the “many-to-one” synchronizations required for the execution structures. Typical

implementations may have one or more of the following mechanisms:

- use an integer to maintain the count and use a mutex to prevent concurrent reading or writing, or

- manage an atomic integer maintaining the count with lock-free operations, or

- adopt the “Tree Atomic Counter” strategy, as mentioned earlier.

In order to implement it with the C++ programming language, the requirements for the “Atomic Counter” is divided

into 3 parts: the LinearBuffer requirements, the AtomicCounterModifier requirements and the

AtomicCounterInitializer requirements, which illustrates the requirements for the return types, for the

modifications and for the initializations, respectively.

1.2.2 Requirements

1.2.2.1 LinearBuffer requirements

A type LB meets the LinearBuffer requirements if the following expressions are well-formed and have the specified

semantics (lb denotes a value of type LB).

lb.fetch()

Requires: The number of times that this function has been invoked shall be less than the predetermined.

Effects: Acquires an entity.

Return type: undefined

Returns: The acquired entity

1.2.2.2 AtomicCounterModifier requirements

A type ACM meets the AtomicCounterModifier requirements if the following expressions are well-formed and

have the specified semantics (acm denotes a value of type ACM).

acm.increase(s)

Requires: s shall be convertible to type std::size_t.

Effect: Increase the Atomic Counter entity corresponding to acm by s.

Return type: Any type that meets the LinearBuffer requirements

Returns: A value whose type meets the LinearBuffer requirements, each of the first (s + 1) times of fetch()

operations to which shall acquire a value whose type meets the AtomicCounterModifier requirements, and

that corresponds to the Atomic Counter entity as acm does.

Post condition: acm no longer corresponds to an Atomic Counter entity.

acm.decrement()

Effect: If the state of the Atomic Counter entity corresponding to acm is positive, decrease the state of the entity by

one.

Return type: bool

Returns: true if the state of the entity is positive before the operation, false otherwise.

Post condition: acm no longer corresponds to an Atomic Counter entity.

Synchronization: If this operation returns true, it synchronizes with subsequent decrement() operations that

return false on any entity meets the AtomicCounterModifier requirements and that corresponds to the

same Atomic Counter entity as acm does; otherwise, prior decrement() operations that return true on any

entity whose type meets the AtomicCounterModifier requirements, and that corresponds to the same Atomic

Counter entity as acm does shall synchronize with this operation.

1.2.2.3 AtomicCounterInitializer requirements

A type ACI meets the AtomicCounterInitializer requirements if the following expressions are well-formed and

have the specified semantics (aci denotes a value of type ACI).

aci(s)

Requires: s shall be convertible to type std::size_t.

Effect: Initialize an Atomic Counter entity whose initial count shall be equals to s.

Return type: Any type that meets the LinearBuffer requirements

Returns: A value whose type meets the LinearBuffer requirements, each of the first (s + 1) times of fetch()

operations to which shall acquire a value whose type meets the AtomicCounterModifier requirements, and

corresponds to the initialized Atomic Counter entity.

1.2.3 Concepts

1.2.3.1 Concept template LinearBuffer

namespace requirements {

template <class T, class U>

concept bool LinearBuffer() {

 return requires(T buffer) {

 { buffer.fetch() } -> U;

 };

}

}

1.2.3.2 Concept template AtomicCounterModifier

namespace requirements {

template <class T>

concept bool AtomicCounterModifier() {

 return requires(T modifier) {

 { modifier.decrement() } -> bool;

 } && (requires(T modifier) {

 { modifier.increase(0u) } -> LinearBuffer<T>;

 } || requires(T modifier) {

 { modifier.increase(0u).fetch() } -> AtomicCounterModifier;

 });

}

}

1.2.3.3 Concept template AtomicCounterInitializer

namespace requirements {

template <class T>

concept bool AtomicCounterInitializer() {

 return requires(T initializer) {

 { initializer(0u).fetch() } -> AtomicCounterModifier;

 };

}

}

1.3 Runnable and Callable Types

The Callable types are defined in the C++ programming language with specified input types and return type. The

Runnable types are those Callable types which have no input and unspecified return type. The Callable types

are required to be CopyConstructible, but the Runnable types are only required to be MoveConstructible.

1.3.1 Concept template Runnable

template <class F>

concept bool Runnable() {

 return requires(F f) {

 { f() };

 };

}

1.3.2 Concept template Callable

template <class F, class R, class... Args>

concept bool Callable() {

 return requires(F f, Args&&... args) {

 { f(std::forward<Args>(args)...) } -> R;

 };

}

1.4 Concurrent Procedures

1.4.1 Intention

Figure 1

Figure 2

Figure 3

The “Concurrent Callable” is a Callable type defined in the C++ programming language. This concept is an abstraction

for the smallest concurrent task fragment required in the execution structures. Typical implementations may have one or

more of the following mechanisms:

- be wrapped from a Callable type (in other words, gives up the chance to call the function template

concurrent_fork), as is shown in Figure 1 (note that std::bind(std::forward<F>(f)),

std::forward<Args>(args)...)() will perform F(Args&...); with the helper function template

bind_simple the implementation will perform F(Args&&...)), or

- be implemented manually, and may call the function template concurrent_fork, as is shown in Figure 2,

or

- be implemented with a “Template” with runtime abstraction by inheriting from an abstract class, as is shown in

Figure 3 (note that abstraction::AtomicCounterModifier and abstraction::Callable are wrappers for Atomic

Counter Modifiers and Callables, respectively; their principles are the same as std::function).

1.4.2 ConcurrentProcedure requirements

A type CP meets the ConcurrentProcedure requirements if the following expressions are well-formed and have the

specified semantics (cp denotes a value of type CP).

cp(acm, c)

Requires: The original types of acm and c shall meet the AtomicCounterModifier requirements and the

Callable<void> requirements, respectively.

Effects: Execute the user-defined concurrent procedure synchronously.

Return type: Any type that meets the AtomicCounterModifier requirements

Note: It is allowed to invoke the function template concurrent_fork within this scope.

1.4.3 Concept template ConcurrentProcedure

namespace requirements {

template <class T, class U, class V>

concept bool ConcurrentProcedure() {

 return requires(T procedure, U&& modifier, V&& callback) {

 { procedure(std::forward<U>(modifier), std::forward<V>(callback)) }

 -> AtomicCounterModifier;

 };

}

}

1.5 Execution Agent Portals

1.5.1 Intention

Figure 4

Figure 5

Large-scale concurrent programming usually requires load balancing for every part of the program. Although there are

many libraries provide us with quite a few APIs for concurrent algorithms, they are usually harmful in load balancing,

especially when there are other works to be done that attach to higher priorities.

Currently in C++, we have the term “Execution Agent”, which is “an entity such as a thread that may perform work in

parallel with other execution agents”. An “Execution Agent Portal” is an abstraction for the method required for the

execution structures, that to submit callable units to concrete Execution Agents. Typical implementations may have one

or more of the following mechanisms:

- submit the input callable unit to the current Execution Agent and sequentially execute it, or

- submit the input callable unit to a new daemon thread (not able to join it at all; the exit of all non-daemon

threads may kill all daemon threads), as is shown in Figure 4, or

- submit the input callable unit to a new non-daemon thread so that it can run even if the “main” function has exit,

as is shown in Figure 5 (note that the class ThreadManager is a singleton type that manages the thread objects),

or

- submit the input callable unit to some remote executor, or

- submit the input callable unit to a threadpool entity.

1.5.2 ExecutionAgentPortal requirements

A type EAP meets the ExecutionAgentPortal requirements if the following expressions are well-formed and have

the specified semantics (eap denotes a value of type EAP).

eap(f, args...)

Requires: The original types of f and each parameter in args shall satisfy the MoveConstructible

requirements. INVOKE (std::move(f), std::move(args)...) shall be a valid expression.

Effects: Submit the parameters to a concrete Execution Agent which executes INVOKE (std::move(f),

std::move(args)...) asynchronously. Any return value from this invocation is ignored.

1.6 Concurrent Callables

1.6.1 Intention

Figure 6

This concept is an abstraction for async tasks required for the execution structures. Typical implementations may have

one or more of the following mechanisms:

- combine an Execution Agent Portal entity and a Concurrent Procedure entity, repack the Concurrent Procedure

entity into another callable unit that will execute the function template concurrent_join as the Concurrent

Procedure is executed, submit the callable unit with the Execution Agent Portal entity, as is shown in Figure 6.

- combine multiple Execution Agent Portal entities and their corresponding Concurrent Procedure entities,

execute the Concurrent Procedure entities sequentially with different Execution Agent Portal entities.

1.6.2 ConcurrentCallable requirements

A type CC meets the ConcurrentCallable requirements if the following expressions are well-formed and have the

specified semantics (cc denotes a value of type CC).

cc(acm, c)

Requires: The original types of acm and c shall meet the AtomicCounterModifier requirements and the

Callable requirements, respectively.

Effects: Execute the user-defined concurrent callable unit asynchronously.

Return type: void

Note: It is allowed to invoke the function template concurrent_fork within this scope.

1.7 Concurrent Callers

1.7.1 Intention

This concept is an abstraction for task launching strategies required for the execution structures. Typical implementations

may have one or more of the following mechanisms:

- abstract the tasks into one or multiple entities that meet the ConcurrentCallable requirements, or

- sequentially launch the tasks, or

- concurrently launch the tasks when there is a large number of them, or

- recursively split the large launching work into several small ones (optimally, 3) and execute them concurrently

when adequate execution resources are provided, as mentioned earlier.

1.7.2 ConcurrentCaller requirements

A type CC meets the ConcurrentCaller requirements if the following expressions are well-formed and have the

specified semantics (cc denotes a value of type CC).

cc.size()

Return type: std::size_t

Returns: The number of times that cc.call(lb, ccb) shall perform the lb.fetch() operation.

cc.call(lb, c)

Requires: The original types of lb and c shall meet the LinearBuffer requirements and the

Callable<void> requirements, respectively; each of the first size() times of the lb.fetch() operation

shall acquire a value whose type meets the AtomicCounterModifier requirements, and that corresponds to a

same Atomic Counter entity.

Effects: Perform size() times of the lb.fetch() operation synchronously, and invoke size() times of the

function template concurrent_join asynchronously.

Return type: void

1.7.3 Concept template ConcurrentCaller

namespace requirements {

template <class T, class U, class V>

concept bool ConcurrentCaller() {

 return requires(const T c_caller, T caller, U& buffer, const V& callback) {

 { c_caller.size() } -> size_t;

 { caller.call(buffer, callback) };

 };

}

template <class T, class U, class V>

constexpr bool concurrent_caller_all(T&, const U&, V&) {

 return ConcurrentCaller<V, T, U>();

}

template <class T, class U, class V, class... W>

constexpr bool concurrent_caller_all(T& buffer, const U& callback, V& caller, W&...

callers) {

 return concurrent_caller_all(buffer, callback, caller) &&

 concurrent_caller_all(buffer, callback, callers...);

}

// true if every Vi satisfies ConcurrentCaller<Vi, T, U>()

template <class T, class U, class... V>

concept bool ConcurrentCallerAll() {

 return requires(T& buffer, const U& callback, V&... callers) {

 requires concurrent_caller_all(buffer, callback, callers...);

 };

}

}

2 Function Templates

2.1 Function template async_concurrent_invoke

template <class Callback,

 class... ConcurrentCallers>

void async_concurrent_invoke(const Callback& callback,

 ConcurrentCallers&&... callers) {

 async_concurrent_invoke_explicit(DefaultAtomicCounterInitializer(),

 callback,

 callers...);

}

Function template async_concurrent_invoke is a wrapper for function template

async_concurrent_invoke_explicit with default “many-to-one” synchronization strategy.

2.2 Function template async_concurrent_invoke_explicit

Figure 7

template <class AtomicCounterInitializer,

 class Callback,

 class... ConcurrentCallers>

void async_concurrent_invoke_explicit(AtomicCounterInitializer&& initializer,

 const Callback& callback,

 ConcurrentCallers&&... callers) requires

 requirements::AtomicCounterInitializer<AtomicCounterInitializer>() &&

 requirements::Callable<Callback, void>() &&

 requirements::ConcurrentCallerAll<

 decltype(initializer(0u)),

 Callback,

 ConcurrentCallers...>();

Requires: The types AtomicCounterInitializer, Callable and each type in ConcurrentCallers

pack shall meet the AtomicCounterInitializer requirements, the Callable requirements and the

ConcurrentCaller requirements, respectively.

Effects: Execute the “Async Concurrent Invoke” model, whose flow chart is shown in Figure 7.

Return type: void

2.3 Function template sync_concurrent_invoke

template <class Runnable, class... ConcurrentCallers>

auto sync_concurrent_invoke(Runnable&& runnable,

 ConcurrentCallers&&... callers) {

 return sync_concurrent_invoke_explicit(DefaultAtomicCounterInitializer(),

 DefaultBinarySemaphore(),

 runnable,

 callers...);

}

Function template sync_concurrent_invoke is a wrapper for function template

sync_concurrent_invoke_explicit with default “many-to-one” synchronization and default blocking strategy.

2.4 Function template sync_concurrent_invoke_explicit

Figure 8

template <class BinarySemaphore>

class SyncInvokeHelper {

 public:

 explicit SyncInvokeHelper(BinarySemaphore& semaphore) : semaphore_(semaphore) {}

 ~SyncInvokeHelper() { semaphore_.wait(); }

 private:

 BinarySemaphore& semaphore_;

};

template <class AtomicCounterInitializer,

 class BinarySemaphore,

 class Runnable,

 class... ConcurrentCallers>

auto sync_concurrent_invoke_explicit(AtomicCounterInitializer&& initializer,

 BinarySemaphore&& semaphore,

 Runnable&& runnable,

 ConcurrentCallers&&... callers) requires

 requirements::AtomicCounterInitializer<AtomicCounterInitializer>() &&

 requirements::BinarySemaphore<BinarySemaphore>() &&

 requirements::Runnable<Runnable>() &&

 requirements::ConcurrentCallerAll<

 decltype(initializer(0u)),

 SyncConcurrentCallback<std::remove_reference_t<BinarySemaphore>>,

 ConcurrentCallers...>();

Requires: The types AtomicCounterInitializer, BinarySemaphore, SerialCallable and each

type in ConcurrentCallers pack shall meet the AtomicCounterInitializer requirements, the

BinarySemaphore requirements, the SerialCallable requirements and the ConcurrentCaller

requirements, respectively.

Effects: Execute the “Sync Concurrent Invoke” model, whose flow chart is shown in Figure 8.

Return type: std::result_of_t<SerialCallable()>

Returns: anything that callable() returns

2.5 Function template concurrent_fork

Figure 9

template <class AtomicCounterModifier,

 class Callback,

 class... ConcurrentCallers>

auto concurrent_fork(AtomicCounterModifier&& modifier,

 const Callback& callback,

 ConcurrentCallers&&... callers) requires

 requirements::AtomicCounterModifier<AtomicCounterModifier>() &&

 requirements::Callable<Callback, void>() &&

 requirements::ConcurrentCallerAll<

 decltype(modifier.increase(0u)),

 Callback,

 ConcurrentCallers...>();

Requires: The types AtomicCounterModifier, SerialCallable and each type in

ConcurrentCallers pack shall meet the AtomicCounterModifier requirements, the

SerialCallable requirements and the ConcurrentCaller requirements, respectively.

Effects: Execute the “Concurrent Fork” model, whose flow chart is shown in Figure 9.

Return type: decltype(modifier.increase(0u).fetch())

Returns: An Atomic Counter Modifier entity corresponds to an Atomic Counter entity.

2.6 Function template concurrent_join

Figure 10

template <class AtomicCounterModifier,

 class Callback>

void concurrent_join(AtomicCounterModifier&& modifier,

 Callback& callback) requires

 requirements::AtomicCounterModifier<AtomicCounterModifier>() &&

 requirements::Callable<Callback, void>();

Requires: The types AtomicCounterModifier and Callable shall meet the AtomicCounterModifier

requirements and the Callable requirements, respectively.

Effects: Perform modifier.decrement(), if the returned value is false, execute callback(), whose flow

chart is shown in Figure 10.

Return type: void

3 Implementation

Figure 11

Although some details are still to be considered to make this solution standardized, I’ve already implemented a prototype

for the entire solution in C++ (with C++14 (minimum supported) and the Concept TS). The header file

“concurrent.h” (which includes other 10 header files) enables users to use anything in the library. Every type and

function in the solution is defined in the namespace con. The overview of the library is shown in Figure 11.

Figure 12

For a better understanding for the implementation, 5 examples is attached, as is shown Figure 12.

