
Simplifying and unifying the design of
user-defined mathematical containers

Document number: Draft
Version: 0.1
Date: 2012

Vincent Reverdy (vince.rev@gmail.com)
Laboratory Universe and Theories, Observatory of Paris,

5 place Jules Janssen, 92195 Meudon, France

December 29, 2012

Abstract

This proposal concerns the addition of three helper classes to the standard library in
order to simplify and unify the creation of new mathematical containers. The goal is
to reduce the current complexity of implementing new containers with optimized oper-
ations using generic tools based on the Curiously Recurring Template Pattern (CRTP)
technique. It will also provide a common base for all the constant size vectors and ma-
trices of graphics and scientific librairies (Vector2D, Vector3D, Matrix3D, MatrixNxM,
Tensor3D. . .). This proposal should be able to fill the current lack of simple mathematical
containers of the C++ and bring a standardized answer to a lot of technical and scientific
basic problems.

Contents

I Motivation 2

II Impact on the standard 3

III Design decisions 4

IV Technical specifications 5

V Examples of use 5

VI Acknowledgements 5

VII References 5

1

I Motivation

This proposal comes from a simple observation: an impressive number of colleagues working
in a wide variety of engineering and scientific fields are concerned by the lack of standardized
tool to design basic vectors and matrices and many of them emphasize the advantage of lan-
guages like FORTRAN on this specific point. This observation can be easily confirmed by
looking to widely used graphics and scientific libraries and frameworks: oftenly, classes such as
Vector2D, Vector3D, Tensor3D or Matrix4x4 are reimplemented from scratch. Some examples
are given in table 1. This results in a huge development effort to design and optimize standard
operations on simple things like a 3D vector. So the open question addressed here is : what
is the most generic base of all mathematical containers that could be standardized in order to
provide an elegant solution to this problem ?

Before going further, it is important to note two key elements. First, even if std::valarray
provides an optimized container that supports all basic operations, it is not well designed for
composition or inheritance. Consequently, it cannot be used as a common base on which one
can add new operators or functions. Second, the problem addressed here is not the same as the
one addressed by linear algebra libraries. The goal of the proposed tools is not to diagonalize
100× 100 matrices, to optimize sparse or non-sparse containers, or to solve sets of hundreds of
equations.

The proposal concerns the creation of new containers by the users and is not about the
integration of new containers in the standard library. The goal is to provide a generic mechanism
that simplifies and unifies the design of mathematical arrays that need the standard operators
and some function application members. This mechanism based on the Curiously Recurring
Template Pattern (CRTP) technique will reduce the long step of design, implementation and
optimization of basic things like a Vector3D to the simple inheritance from a class. A resulting
example of use for the creation of a constant size matrix is provided in figure 1. Finally, these
tools will have a wide range of use and will allow library designers, software developers, engineers
and scientists to create their own mathematical containers without having to implement them
from scratch.

Figure 1: Creation of a basic constant size matrix using a mathematizer.

#include <mathematizer>
#include <array>

template<typename T, std::size_t N, std::size_t M>
class MyMatrix
: public std::static_mathematizer<std::size_t, N*M, MyMatrix, T, N, M>
{

public:
template<typename U> MyMatrix(const MyMatrix<U, N, M>& other)
{std::mathematizer::set(*this, other);}
template<typename U> explicit MyMatrix(const U& other)
{std::mathematizer::set(*this, other);}

T& at(std::size_t i, std::size_t j)
{return _data[i*N+j];}
const T& at(std::size_t i, std::size_t j) const
{return _data[i*N+j];}

T& access(std::size_t n)
{return _data[n];}
const T& access(std::size_t n) const
{return _data[n];}

protected:
std::array<T, N*M> _data;

};

extra parameters of the user-defined container

value typethe class itself (CRTP)extra parameters type

constructors from another matrix type and from a value

multidimensional access to an element of the matrix

monodimensional access member function required by std::mathematizer

underlying container

the mathematizer automatically provides all standard
operators (including heterogenous types operations as
int+double) and some functions like apply(), reduce(),
min(), max()...

2

Table 1: Examples of basic vectorized containers of some C++ libraries and frameworks.

Library Category Example of containers

Qt Application/GUI
Framework

QVector2D, QVector3D, QVector4D,
QGenericMatrix, QMatrix4x4. . .

VTK Visualization
vtkVector2, vtkVector3, vtkPoints2D,
vtkPoints, vtkMatrix3x3, vtkMatrix4x4,
vtkTensor. . .

OGRE 3D Engine SmallVector, Matrix3, Matrix4. . .
Irrlicht 3D Engine vector2d, vector3d, CMatrix4. . .

OpenSceneGraph 3D Engine Vec2d, Vec3d, Vec4d, Matrix2,
Matrix3. . .

Panda3D 3D Engine LVector2d, LVector3d, LVector4d,
LMatrix3d, LMatrix4d. . .

OpenFOAM Fluid Dynamics scalar, vector, tensor. . .
Lorene Astrophysics Scalar, Vector, Tensor. . .

ROOT Particle Physics

DisplacementVector3D,
DisplacementVector2D, PositionVector3D,
PositionVector2D, Rotation3D, Vector3D,
Point3D. . .

And many others.

II Impact on the standard

This proposal is a pure addition to the existing library and consequently it would not affect
existing programs. Nevertheless, it requires the addition of a new header shown in table 2.

Table 2: Summary of affected headers

Subclause Header(s)
IV <mathematizer>

Unless otherwise specified, all components described in this proposal would be declared in
namespace std. Furthermore, unless otherwise specified, all references to components described
in the C++ standard library are assumed to be qualified with std::. The design described in
part III uses only C++11 features and do not require non-standard extension. The technical
specifications presented in part IV would require an extensive use of the type traits of the
standard library. No current element of the standard library would be modified by or would
depend on the tools provided in the mathematizer header.

3

http://qt-project.org/
http://www.vtk.org
http://www.ogre3d.org
http://irrlicht.sourceforge.net
http://www.openscenegraph.org
http://www.panda3d.org
http://www.openfoam.com
http://www.lorene.obspm.fr
http://root.cern.ch

III Design decisions

The design presented in the following is based on original ideas introduced and tested during
the development and implementation of the MAGRATHEA framework1. The philosophy is
quite the same as the one of the iterator base class, but instead of providing a generic tool to
simplify the creation of new iterators, the goal here is to provide a generic tool that simplifies
the creation of new mathematical containers. To do so, the Curiously Recurring Template
Pattern (CRTP) idiom is used. The resulting tools allow to provide all the standard arithmetic
operators, comparators, element accessors and some modifier functions to a container just by
inheriting it from one of the mathematizer classes. To keep the design as simple and as generic
as possible, no multidimensional operation is provided (as the matrix multiplication) but it will
be quite easy for the end user to add all the specific operators he wants to his classes. This ease
of modification is a great advantage of the mechanism described in the following paragraphs
and in the technical section.

The design of the <mathematizer> header consists of three classes as presented in figure 2:

• mathematizer is the base class, mainly used for type traits.

• static_mathematizer is the provided tool to mathematize constant size containers with
the template shape Container<typename, Integers...> where typename represents the
data type and where Integers is the integral type of extra parameters.

• dynamic_mathematizer is the provided tool to mathematize dynamic size containers with
the template shape Container<typename, Integers...> where typename represents the
data type and where Integers is the integral type of extra parameters.

Figure 2: Inheritance relation between the three classes of the <mathematizer> header.

std::mathematizer

Define traits and provide helper
classes/functions.

std::dynamic_mathematizer

Provide operators and functions for
dynamic size containers

std::static_mathematizer

Provide operators and functions for
constant size containers

These three classes are abstract classes with protected destructors and cannot be used di-
rectly. Furthermore, they are empty classes in the sense that they only define methods: the
actual data contents is owned by the derived classes and one should only provide an access()
function to get the elements of the container.

The proposed design has two limitations. First, the inherited containers are required to
have a specific template shape. These template parameters are compatible with standardized
containers like vector<typename> or array<typename, size_t>. If one want to use another
template shape, it can use alias templates or inherit from a container with the compatible
template parameters. Second, one cannot use a mathematizer on a container of mathematized
containers due to the use of type traits to distinguish between container/container and contain-
er/value operations. This is not a limiting factor for the creation of multidimensional arrays

1The MAGRATHEA (Multi-cpu Adaptive Grid Refinement Analysis for THEoretical Astrophysics) frame-
work is under active development by V. Reverdy and is expected to be released publicly as an open source
software in 2013.

4

as the access() member should provide an access to all elements regardless of any notion of
dimension. These limitations, however, are a small price to pay to use generic tools that can
automatically generate all the standard operators whatever the container and its contents are.

IV Technical specifications

V Examples of use

VI Acknowledgements

VII References

5

	 Motivation
	 Impact on the standard
	 Design decisions
	 Technical specifications
	 Examples of use
	 Acknowledgements
	 References

