
Document number: D0635R0
Date: 2017-03-24
Author: Dan Raviv <dan.raviv@gmail.com>
Audience: LEWG, LWG

Add c_array() method to std::array

I. Introduction
std::array is a fixed-size C-array wrapper class. Currently, it provides no method for
getting a reference to its wrapped C-array, making the class incompatible with existing
functions which accept a reference/pointer parameter to a C-array of a matching type and
size. This paper proposes adding a method to std::array which returns a reference to its
wrapped C-array in order to make the class compatible with such functions.

II. Motivation and Scope
Given an object ar of type std::array<T,N> and a function foo which accepts a
reference/pointer to T[N], there is currently no good way to pass the C-array wrapped by
ar to foo, simply because there is no standardized way within C++’s safe subset to get a
reference to the C-array wrapped by ar.

Passing the C-array wrapped by ar to foo forces a programmer to either:
 1) Rewrite foo to accept a std::array<T,N> instead of a reference/pointer to T[N]. This
isn’t always possible (foo might be provided by a 3rd-party), isn’t always desirable (foo
might be used in projects which build under a pre-C++11 compiler), and always takes
some programmer time.

 2) Add an overload to foo which accepts a std::array<T,N> instead of a reference/
pointer to T[N]. This isn’t always possible (foo might be provided by a 3rd-party),
usually isn’t desirable (the extra overload is boilerplate for the same implementation),
and always takes some programmer time. Adding the overload also needs to be done
repeatedly for each function similar to foo.

 3) Rewrite ar so it is of type T[N] instead of type std::array<T,N>. This isn’t always
possible and usually isn’t desirable.

 4) Use a safe but non-standardized way to get the C-array wrapped by ar, e.g., directly
access the std::array::elems data member equivalent. This limits the code’s portability
and future-proofness.

 5) Use standard C++ code which isn’t in the safe subset, e.g., call

reinterpret_cast<T(*)[N]> on the return value of std::array::data(). This limits the
contexts in which the code can be used, e.g., reinterpret_cast cannot be used in
constexpr expressions. It is also error-prone and makes for less safe code.

Adding a method to std::array to get a reference to its wrapped C-array would allow
naturally passing the C-array to foo without having to use one of the above workarounds.

The scope of this proposal isn’t large because functions accepting a reference/pointer to
T[N] aren’t common. However, pre-C++11, such functions were a valid and safe choice
for cases where a pre-determined number N of objects of type T had to be passed to a
function, e.g.

class Function {
 /// ...
};

// See https://en.wikipedia.org/wiki/Hilbert_transform#Conjugate_functions
Function InverseHilbertTransform(const Function (&)[2]);

Making such existing functions compatible with std::array would encourage
programmers to keep using std::array to represent their data, even if they need to make
use of such existing functions. If the compatibility isn’t added, then in some cases
programmers would prefer using raw C-arrays to represent their data to avoid being
forced to use one of the workarounds listed above, making their code less safe and
modern. Since making writing safe and modern C++ code easier is a goal of the standard,
the compatibility should be added.

IV. Impact On the Standard
There is no impact on the standard other than adding the proposed method to std::array,
the implementation of which is trivial: returning std::array::elems.

V. Design Decisions
1) This paper proposes adding a new c_array() member method to std::array which
returns a reference to the wrapped C-array.

 Note that boost::array already has a c_array() member method, returning a pointer,
but according to previous discussion[1] it’s only there for historical reasons. In any case,
this is a minor concern because boost::array is now deprecated in favor of std::array
anyway, and it is only mentioned here for completeness.

2) Alternatives considered and rejected:
 a) Removing the words “exposition only” from the definition of std::array::elems in

the standard, as well as the note saying that “elems is shown for exposition only.”[1]

 The clear drawback of this solution is that it limits the flexibility of the std::array
implementation. Specifically, Lawrence Crowl wrote it might be better to leave
std::array::elems “for exposition only” to allow alternate representations to allocate
the array data dynamically. This might be of interest to the embedded community, having
to deal with very limited stack sizes.[1]

 Another drawback of this solution is that it would force std::array to remain an
aggregate type in future versions of the standard. The original reasoning for making
std::array an aggregate type was for the class to be “designed to function as closely as
possible as a drop-in replacement for a traditional array… it must be implemented as an
aggregate type… in order to support initializer syntax”[2]. Since C++ now supports
braced initialization for non-aggregate classes via constructors from
std::initializer_list, it’s possible for std::array to support initializer syntax without
being an aggregate type, which might be desirable in the future to remove some
limitations of aggregate types from std::array.

 Finally, the paper introducing std::array relies on the fact that std::array::elems
is for exposition only as a mitigating factor to the fact that “Traditionally public data
members are discouraged”[2] and that std::array::elems is such a public data member,
since “the name of the data member is implementation defined so cannot be portably
relied on”[2] anyway. Making std::array::elems not for exposition only would remove
this mitigating factor.

 b) Changing the existing std::array::data() method so it returns a reference to the C-
array instead of a raw pointer.

 A major drawback of this solution is that it breaks backwards compatibility with the
existing implementations[1].

 Another drawback is that changing the return type of this method directly conflicts
with the intent of the original paper which introduced std::array, which reads “The
return type of data() is chosen to be (const) T *… This maintains the similarity with
basic_string::data(), avoids surprises if template type deduction is performed on the
result, and reduces temptation to try clever manipulations…”[2]

 c) Adding an explicit conversion operator. This has been suggested in the past and
rejected because “it would be inconvenient to use”.[1]

 d) Doing nothing. As described under ‘Motivation and Scope’ above, the drawback of

this is backwards-incompatibility of std::array with existing functions which accept a
reference/pointer to a C-array.

 Specifically, the proposal in this paper was previously open as LWG issue 930 but
closed as NAD (Not a Defect) because “There are known other ways to do this, such as
small inline conversion functions.”[1] This paper makes the argument that such
conversion functions have significant drawbacks, as described above under ‘Motivation
and Scope’, workarounds 4 and 5.

 In more detail, workaround No. 4, using a safe but non-standardized way to get ar’s
underlying C-array, could be implemented as: [3]
template <typename T, size_t N>
constexpr auto& c_array(std::array<T, N>& ar)
{
#if defined(_MSC_VER)
 return ar._Elems;
#elif defined(_LIBCPP_VERSION)
 return ar.__elems_;
#elif defined(__GLIBCXX__)
 return ar._M_elems;
#else
#error "unknown standard library"
#endif
}

which obviously has limited portability and isn’t even future-proof to changes in the
supported standard libraries implementations.

 Workaround No. 5, using a solution which is standard C++ but isn’t in the safe
subset, could be implemented as: [4]
template<typename T, size_t N>
auto inline c_array(std::array<T, N>& ar) {
 return reinterpret_cast<T(&)[N]>(*ar.data());
}

which has the drawback of not being usable in constexpr expressions.

VI. Technical Specifications
- Under [array.overview] add the following to the template definition of std::array:
 using c_array_type = T[N];
 constexpr c_array_type& c_array() &;
 constexpr const c_array_type& c_array() const &;
 constexpr c_array_type&& c_array() &&;

- Add a subsection [array.c_array] after the subsection [array.data]:
 array::c_array [array.c_array]

 constexpr c_array_type& c_array() &;
 constexpr const c_array_type& c_array() const &;
 constexpr c_array_type&& c_array() &&;

 Returns: elems.

- Under [array.zero] add:
 The type c_array_type is unspecified for a zero-sized array.
and make the change:
 The effect of calling c_array(), front(), or back() for a zero-sized array is undefined.

VII. Acknowledgements
Much of this proposal is based on work previously done by Niels Dekker and others on
LWG issue 930.
Thanks to Daniel Krügler, Erich Keane, Joe Gottman and Zhihao Yuan on the std-
proposals newsgroup for their comments and help writing this proposal.

VIII. References
[1] LWG Issue 930, http://cplusplus.github.io/LWG/lwg-closed.html#930
[2] Alisdair Meredith, N1548, “A Proposal to Add a Fixed Size Array Wrapper to the
Standard Library Technical Report”, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2003/n1548.htm
[3] Zhihao Yuan, https://groups.google.com/a/isocpp.org/d/msg/std-proposals/
C6uVlKTOI_w/Hm-U72f-CwAJ
[4] Erich Keane, https://groups.google.com/a/isocpp.org/d/msg/std-proposals/
C6uVlKTOI_w/A8PkF1n1CwAJ

