
Document number: ?

Date: 2016-03-13

Project: Programming Language C++, Evolution Working Group

Reply-to: Daniel Frey <d.frey@gmx.de>

Improve variadic parameter packs
Introduction
Most uses of template parameter packs require the pack to be broken down into its constituent 
elements. For some common simple cases (like "pick the N-th argument") this requires complexity 
(and compiler resources) disproportionate to the task at hand.

Recursive implementations or indirections are often used, but they have several weaknesses:

• It’s expensive in terms of compiler resources (e.g., template instantiations use memory that is 
never freed during the compilation process, slow compile times).

• The instantiation depth limit is reached even for simple cases (e.g., calling std::tuple_cat 
with a resulting tuple of 25 elements reached the limit of 256 when using Clang with libstdc++).

• Diagnostics are likely to be overly verbose.

While recursion can often be avoided, it requires tricks and work-arounds which should not be 
necessary and some overhead will still remain. Even without recursion, some tasks can not be 
expressed directly and require unintuitive work-arounds.

The above shows that there is a problem with the fundamentals of handling variadic templates. 
Simple tasks should be simple and complicated tasks should be possible, but the language 
currently fails to make the simple tasks actually simple.

It is also not following the zero-overhead principle. In some cases even the generated runtime-
code suffers from the additional indirections and recursion and is not as efficient as it should be. 
The “sufficiently-smart compiler” argument is sometimes brought up, put in practice compilers do 
generate inferior code for several cases.

This paper identifies the missing primitives to allow efficient use of template parameter packs, 
significantly reducing compile-times and memory usage, improve code readability and 
maintainability, improve error messages and finally improve the generated code in common use-
cases.

Proposal
We propose to add two extensions to the language: Pack Selection and Pack Declarations. Those 
primitives, together with the existing language, combine nicely to significantly improve several 
common patterns in C++ as will be shown.

Pack Selection
Create only a single expansion of a pattern.

Page �1



Syntax: pattern...[integral-constant]

Pack Declaration
Allow packs to be declared explicitly.

Syntax 1.1: typename... Ts;
Syntax 1.2: typename... Ts = template-argument—list;
Syntax 1.3: using typename... Ts = class :: pack;
Syntax 2.1: integral-type... Is;
Syntax 2.2: integral-type... Is = template-argument—list;
Syntax 2.3: using integral-type... Is = class :: pack;
Syntax 2.4: integral-type... Is = ... integral—constant;

Examples
A typical use-case for pack selection is found in std::tuple_element, allowing the following 
implementation:

template<size_t I, class... Types> 
struct tuple_element<I, tuple<Types...>> 
{ 
  using type = Types...[I]; 
}; 

A typical use-case for pack declarations is found in the upcoming std::apply. The current 
implementation:

template<class F, class Tuple, size_t... I> 
decltype(auto) apply_impl(F&& f, Tuple&& t, index_sequence<I...>) { 
  return forward<F>(f)(get<I>(forward<Tuple>(t))...); 
} 

template<class F, class Tuple> 
decltype(auto) apply(F&& f, Tuple&& t) { 
  using Indices = make_index_sequence<tuple_size<decay_t<Tuple>>::value>; 
  return apply_impl(forward<F>(f), forward<Tuple>(t), Indices()); 
} 

With a pack declaration, this can be reduced to:

template<class F, class Tuple> 
decltype(auto) apply(F&& f, Tuple&& t) { 
  size_t... I = ...tuple_size<decay_t<Tuple>>::value; 
  return forward<F>(f)(get<I>(forward<Tuple>(t))...); 
} 

With no need to create a std::index_sequence and an additional forwarder …_impl just to 
deduce an index pack from the just-created std::index_sequence.

Syntax 2.4 of pack declarations can be used to implement std::make_integer_sequence:

template<typename T, T...> 
struct integer_sequence; 

Page �2



template<typename T, T N> 
struct make_integer_sequence_impl 
{ 
  T... I = ...N; 
  using type = integer_sequence<I...>; 
}; 

template<typename T, T N> 
using make_integer_sequence = 
  typename make_integer_sequence_impl<T, N>::type; 

Syntax
The syntax for the proposed features uses the ellipsis, since it is nowadays closely tied to variadic 
templates in most people’s minds. By using the ellipsis, we keep things easy to spot and 
consistent.

The proposed pack selection is unambiguous since the current language does not allow the ellipsis 
to be followed by an opening square bracket. No currently valid program will be broken.

The second proposed feature, the pack declaration should also not break any existing and valid 
program as far as I can tell. The proposed pack declarations are always an isolated statement 
which is easy to spot for the user, uses familiar syntax on both the right hand side as well as the 
left hand side. We do not allow access to pack members or in-situ creation of parameter packs in 
order to avoid problems with expansion order and meaning, only by as explicit new syntax (1.3 and 
2.3) we allow limited and controlled access to packs that are members of classes.

Implementability
The proposal should be implementable without introducing new entities to the language. The 
generated entities are all already-known objects that can currently result from either having a 
patterns manually expanded once, i.e., it is either a type or a (compile-time) value, or in case of the 
second proposed feature, it is a pack as-if it was generated by argument deduction.

All modifications are therefore in localized areas and do not interact with the rest of the language, 
compiler, etc. in any new way.

Page �3


