
1

Document Number: to be reserved
Date: 2017-02-04
Audience: SG1
Author: Sergey Vidyuk

Posibility to erase
std::packaged_task return

type

Note: this is an early draft. It's known to be incomplet

and incorrekt, and it has lots of bad formatting.

2

1 Introduction

This document proposes to add partial specialization of the std::packaged_task
class template which destroys information about the type returned
by the function wrapped into the task. The main purpose of this
specialization is to allow to sotre tasks with the same argument
types but di�erernt return types in the same collection.

Prove of concept implementation of the proposed feature is
available on github 1

2 Motivation

Implementing custom executor on top of the std::future API re-
qures some type erasure class for function and function-like objects
which:

� Hold write reference to a shared state of a future.

� Protect from accidental execution of the wrapped function
more than once.

� Make shared state ready with some predictable exception if
object is destroyed without execution of the wrapped func-
tion.

� Store result of the wrapped function or any exception thrown
in the shared state.

� Di�erent objects wrapping functions with the same argument
types but di�erent return type can be stored in a same col-
lection.

Template class std::packaged_task satisfy all of those requre-
ments except the last one. The worst way to overcome this limita-
tion can look like this example:

1https://github.com/VestniK/portable_concurrency/tree/result-erased-task-proposal

 https://github.com/VestniK/portable_concurrency/tree/result-erased-task-proposal

3

// some thread�sa fe queue which i s processed by some
// workers in mul t ip l e threads
using task_queue =

mt_queue<std : : funct ion<void()>>;

template<typename F>
auto post_funct ion (task_queue& queue , F&& func) {

using R = std : : result_of_t<F() >;
auto task = std : : make_shared<

std : : packaged_task<R()>
>(func) ;
auto r e s = task�>get_future () ;
queue . push ([task = std : : move(task)] () {

(� task) () ;
}) ;
return r e s ;

}

This code introduce 2 extra allocations an 1 extra virtual call.
Unfortunatelly I've seen the code like this more than once in a real
life projects.

Better solution is to create type erasure class satisfying require-
ments above. However it's hard or impossible 2 to avoid 1 extra
allocation and introduce 1 extra virtual call using this approach.

Best solution should be zero const and perform no extra indi-
rection or allocation.

3 Proposed somution

This document proposes to add tag-type std::ignore_t which is
unusable for any other purposes and provide partial specialization
of the std::packaged_task class template:

template<typename . . . A>
class packaged_task<ignore_t (A. . .) > ;

2There are no requirements on std::packaged_task to have same size and
aligment for di�erent instantiations. User code relying on such assumptions to
avoid allocation can be broken by the compiler update.

4

It can be move constructed from std::packaged_task<R(A...)>
with the same argument types and any return type. This partial
specialization performs type-erasure of the task result type.

Proposed partial specialization has the same members with the
same behaviour as generic template with the following exceptions:

� No direct constructors from function or function-like objects
provided.

� No get_future method provided.

� No reset method provided. 3

� Provides constructor:

template<typename . . . A>
template<typename R>
packaged_task<ignore_t (A. . .) > : : packaged_task (

packaged_task<R(A...)>&& rhs
) ;

with the following behavior:

� Constructs a std::packaged_task with the shared state
and task formerly owned by rhs, leaving rhs with no
shared state and a moved-from task.

� Throws exception of the type std::future_error with the
code std::future_errc::broken_promise if rhs has shared
state but the future pointing to it was not yet obtained
via rhs.get_future().

� Provides assigment operator:

template<typename . . . A>
template<typename R>
packaged_task<ignore_t (A. . .) > : : operator= (

packaged_task<R(A...)>&& rhs
) ;

3There is no way to get a future to receive the result of the function wrapped
in the std::packaged_task after reset is called on result-erased specialization
so it's proposed to not provide this member for it.

5

with the following behavior:

� Releases the shared state, if any, destroys the previously-
held task, and moves the shared state and the task
owned by rhs into *this. rhs is left without a shared
state and with a moved-from task.

� Throws exception of the type std::future_error with the
code std::future_errc::broken_promise if rhs has shared
state but the future pointing to it was not yet obtained
via rhs.get_future().

Proposed result-erased partial specialization for the std::packaged_task
allows to implement example from the motivation section in the
following way:

// some thread�sa fe queue which i s processed by some
// workers in mul t ip l e threads
using task_queue =

mt_queue<std : : packaged_task<std : : ignore_t ()>>;

template<typename F>
auto post_funct ion (task_queue& queue , F&& func) {

using R = std : : result_of_t<F() >;
auto task = std : : packaged_task<R()>(func) ;
auto r e s = task�>get_future () ;
queue . push (task) ;
return r e s ;

}

this code is simple, readable and deliver task to a worker without
avoidable overhead.

	Introduction
	Motivation
	Proposed somution

