Proposal of Bit-field Default Member
Initializers

Document No.: Dnnnn

Project: Programming Language C++ - Evolution

Author: Andrew Tomazos <andrewtomazos@gmail.com>
Date: 2015-11-20

Summary

We propose default member initializers for bit-fields.
Example:

struct S {
int x ¢ 6 = 42;
b

To ease parsing we specify a rule, roughly summarized as “you have to use the =, and the =
always starts the initializer”.

Background

The declarators of class members are called member-declarators:

member-declarator:
declarator virt-specifier-seq , pure-specifier
declarator brace-or-equal-initializer

1dent1flerOpt attrlbute—spe01fler—seq%m: constant-expression

As can be seen, non-bit-field members may have default member initializers. Bit-fields may not.
The motivation for having initializers for bit-fields is the same as having initializers for
non-bit-fields. It can be argued that the motivation is even stronger for bit-fields, as they usually
occur in “simple structs” where member initializers are heavily used for their
tersity/compactness.

Naively adding them...

member-declarator:


mailto:andrewtomazos@gmail.com

declarator virt-specifier-seqopt pure-specifier .
declarator brace-or-equal-initializer

identifier_ , attribute-specifier-seq_,: constant-expression \

brace-or-equal-initializer .

...creates parsing difficulties and parsing ambiguities. In particular, if a constant-expression is
immediately followed by an optional brace-or-equal-initializer, it can be unclear if a non-nested =
or { is the first token of the initializer or a continuation of the constant-expression, and in some
of those cases this remains ambiguous even with infinite lookahead.

Proposal

We propose adding the initializer to the grammar as per the above and then adding a couple of
special parsing rules that serves to both (a) resolve potential ambiguities; and (b) make it easy
to parse.

Roughly, the first proposed rule is that, in a bitfield declarator, the first non-nested =
token terminates parsing of the constant-expression.

Consequences: A bitfield width may not contain a non-nested = token. A non-nested = token
after the : token in a bitfield declarator unambiguously commences the initializer in a
well-formed program.

Rationale: It would be a very strange constant-expression that uses an overloaded assignment
operator. In such bizarre cases, it remains possible to wrap the bitfield width in parenthesis to
get it to parse as intended.

Roughly, the second proposed rule is that, in a bitfield declarator, a { token does not start
parsing of the brace-or-equal-initializer.

Consequences: The initializer of a bitfield must start with an = token. That is, it must use the
copy-initialization or copy-list-initialization form, and may not use the direct-initialization or
direct-list-initialization form. Informally the rule is “you have to use the equals” in a bitfield
default member initializer.

Rationale: For a bit-field, there is no difference between copy-initialization and
direct-initialization (likewise no difference between copy-list-initialization and
direct-list-initialization). Therefore a would-be use of the direct forms can be replaced with the
copy forms, without semantic difference. For this reason, we resolve the opening brace to the
constant expression.



Wording

Add to member-declarator:

member-declarator:
declarator virt-specifier-seqopt pure-specifier .
declarator brace-or-equal-initializer

identifier , attribute-specifier-seq, ,: constant-expression \

brace-or-equal-initializer
Add to [class.bit]:

A member-declarator of the form:

identifier , attribute-specifier-seq, ,: constant-expression \

brace-or-equal-initializer
New paragraph in [class.bit]:

During parsing of the constant-expression in a bitfield member-declarator:
- Non-nested { tokens are taken as part of the constant-expression. [Note: Such tokens
are never taken as the start of the following brace-or-equal-initializer.]
- A non-nested = token is not taken as part of the constant-expression. [Note: The token is
taken as the start of the following brace-or-equal-initializer.]
[Example:

struct S {
inta:
b ? ¢ : d // constant-expression
= e; // brace-or-equal-initializer

int x :
y { z } // constant-expression
; I/ no brace-or-equal-initializer



