
Document number: PXXXXR0
Date: 2016–07–26
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: Library Evolution Working Group, Library Working Group
Reply to: Vincent Reverdy (vince.rev@gmail.com)

What should the semantic of wrapper classes be?

Vincent Reverdy1 and Robert J. Brunner1

1Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801

Abstract

We discuss the semantic of templated wrapper classes in the C++ language, including
value, reference and pointer wrappers. Although these questions have arisen in the context
of the bit utility proposal P0237, we think that they deserve a speci�c paper since they are
likely to be common to a wide range of proxy classes. We are asking for general guidelines
from LEWG and LWG about the semantic of such classes. In particular, cv-quali�ers and
implicit constructors happen to raise non-trivial questions. In this paper, we present these
questions, explore several options, and ask for guidelines.

Contents

1 Introduction 2

2 The problem 2
2.1 Values, references and pointers . 2
2.2 Semantics of the non-wrapped cases . 3
2.3 Semantics of the wrapped cases . 3
2.4 Questions to be answered . 4

3 Some possible options 5
3.1 Preliminary note . 5
3.2 Exact mapping and unde�ned behavior . 5
3.3 Mapping with equivalences . 5

4 Conclusion 6

5 Acknowledgements 6

6 References 7
1

vince.rev@gmail.com

1 Introduction

In the bit utility proposal P0237[R0, R1, R2] [Reverdy and Brunner, 2016a, Reverdy and Brun-
ner, 2016b, Reverdy et al., 2016], we explore the design space around bit abstractions to provide
a way to manipulate bits e�ciently in the standard library, leading to a common interface to
build bit-oriented data structures and algorithms, including arbitrary precision arithmetic such
as described in N4038 [Becker, 2014]. The proposal include four main classes: std::bit_value,
std::bit_reference, std::bit_pointer and std::bit_iterator of which the last three
are templated. std::bit_reference and std::bit_pointer take the underlying unsigned in-
tegral type in which bits are referenced as a template parameter, while std::bit_iterator is
an iterator adaptor around an iterator with an unsigned integral value_type. In terms of de-
sign, std::bit_value, std::bit_reference and std::bit_pointer act as the value_type,
reference and pointer typedefs of std::bit_iterator. A full detailed motivation of the class
std::bit_valuewas included in P0237R0 and has been validated within LEWG by informal polls
as reported in P0237R1.

Technical discussions at the Oulu 2016 ISO C++ meeting raised the question of making the
class std::bit_value templated as std::bit_reference and std::bit_pointer so that a
reference to a bit value std::bit_value<UIntType>& could be implicitly converted to a bit
reference std::bit_reference<UIntType>, and a pointer to a bit value std::bit_value<
UIntType>∗ could be implicitly converted to a bit pointer std::bit_pointer<UIntType>. This
could be particularly useful to ease the writing of standard algorithms for proxy iterators, as ex-
plored in P0022R1 [Niebler, 2015].

We end up having four templated wrapper classes: a value, a reference, a pointer and an itera-
tor. In the standard library, the di�erence between a const_iterator and a const iterator is
not always obvious for new users, but after a while they get it. But as we will see, with wrappers
around values, references and pointers the problem rapidly becomes a nightmare. Also, we would
like having design guidelines on this particular problem, that could be directly applied within the
context of our bit utilities proposal P0237, but which could also serve as a reference for library
designers who are working on wrappers and on proxy iterators.

2 The problem

2.1 Values, references and pointers

In all the following we consider three templated wrapper classes:
• value<T>: a wrapper around a value that should mimic the behaviour of a value (e.g.
std::bit_value<UIntType>)

• reference<T>: a wrapper around a reference that should mimic the behaviour of a refer-
ence (e.g. std::bit_reference<UIntType>)

• pointer<T>: a wrapper around a pointer that should mimic the behaviour of a pointer (e.g.
std::bit_pointer<UIntType>)

2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4038.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0237r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0022r1.html

As iterators are built on the top of values, references and pointers, we don’t include them in
the problem: they can be treated separately, and most of the conclusions drawn for pointer<T>
can be applied to them. Moreover, at �rst, and to present the problem, we ignore the volatile
quali�er and rvalue references.

2.2 Semantics of the non-wrapped cases

In the non-wrapped case, the const quali�er leads to 8 cases:
1 /∗A∗/ T
2 /∗B∗/ const T
3 /∗C∗/ T&
4 /∗D∗/ const T&
5 /∗E∗/ T∗
6 /∗F∗/ const T∗
7 /∗G∗/ T∗ const
8 /∗H∗/ const T∗ const

with implicit conversions between values and references leading to:
1 int val = 42;
2 const int cval = 42;
3
4 int& refval = val; // Compiles
5 int& refcval = cval; // Does not compile
6 const int& crefval = val; // Compiles
7 const int& crefcval = cval; // Compiles

2.3 Semantics of the wrapped cases

However, with wrappers, a total of 12 cases are introduced:
1 /∗01∗/ value <T>
2 /∗02∗/ value <const T>
3 /∗03∗/ const value <T>
4 /∗04∗/ const value <const T>
5 /∗05∗/ reference <T>
6 /∗06∗/ reference <const T>
7 /∗07∗/ const reference <T>
8 /∗08∗/ const reference <const T>
9 /∗09∗/ pointer <T>

10 /∗10∗/ pointer <const T>
11 /∗11∗/ const pointer <T>
12 /∗12∗/ const pointer <const T>

leading to a far more complicated situation regarding to implicit conversions between values and
references:

1 value <int > val = 42;
2 value <const int > valc = 42;
3 const value <int > cval = 42;
4 const value <const int > cvalc = 42;
5
6 reference <int > ref_val = val; // ?
7 reference <int > ref_valc = valc; // ?

3

8 reference <int > ref_cval = cval; // ?
9 reference <int > ref_cvalc = cvalc; // ?

10
11 reference <const int > refc_val = val; // ?
12 reference <const int > refc_valc = valc; // ?
13 reference <const int > refc_cval = cval; // ?
14 reference <const int > refc_cvalc = cvalc; // ?
15
16 const reference <int > cref_val = val; // ?
17 const reference <int > cref_valc = valc; // ?
18 const reference <int > cref_cval = cval; // ?
19 const reference <int > cref_cvalc = cvalc; // ?
20
21 const reference <const int > crefc_val = val; // ?
22 const reference <const int > crefc_valc = valc; // ?
23 const reference <const int > crefc_cval = cval; // ?
24 const reference <const int > crefc_cvalc = cvalc; // ?

where // ? means “Should it be considered as valid or not?”.
With volatile, the situation becomes even worse, with a total of 48 cases, including things

such a volatile reference<const volatile T>, and 256 possible conversions, compiling or
not, between values and references.

2.4 Questions to be answered

All these possibilities of conversion raise important design questions, since �nding the right set
of constructors required to perform these conversions is not trivial. Consequently, we would like
guidance from LEWG and LWG on the following:
What should the semantics of a set of value, reference and pointer wrappers around a
type T be, especially regarding to cv-quali�ers?

In particular:
• What should the semantic of operators ∗ and & be? Is it ok to leave the default oper-

ator & for value<T>, and applies a symmetry for reference<T> and pointer<T> with
reference<T>::operator& returning a pointer<T> and pointer<T>::operator∗ re-
turning a reference<T>, plus implicit conversions from value<T>& to reference<T> and
from value<T>∗ to pointer<T>?

• How should the 12 cases mentioned in part 2.3 be mapped to the original 8 cases mentioned
in part 2.2? Or in other words, what numbers are associated to what letters? For example:
should the semantics of value<const T> and const value<T> be the same?

• What is the minimal set of constructors required to perform all the implicit conversions
required by the answer to the preceding question?

4

3 Some possible options

3.1 Preliminary note

In the following, we explore several possibilities, mainly to illustrate the extent of the conse-
quences of some choices. Other possibilities exist, and are very welcome by the authors of this
paper.

3.2 Exact mapping and unde�ned behavior

The �rst option, which seems to us the easiest, the most conservative and the most practical, is
to consider the following mapping:

Exact mapping: 8 non-wrapped cases ↔ 8 wrapped cases
Description Non-wrapped version Wrapped version

mutable value T value<T>
constant value const T value<const T>

reference to mutable T& reference<T>
reference to constant const T& reference<const T>

mutable pointer to mutable T∗ pointer<T>
mutable pointer to constant const T∗ pointer<const T>
constant pointer to mutable T∗ const const pointer<T>
constant pointer to constant const T∗ const const pointer<const T>

This means that the remaining 4 cv-quali�ed wrappers, namely const value<T>, const
value<const T>, const reference<T> and const reference<const T> are considered as
irrelevant, and their behavior may be considered as unde�ned. Providing a set of constructors
to perform the implicit conversion between the 8 well-de�ned cases mimicking the semantics of
the non-wrapped versions is relatively easy. This option is easy to extend to the volatile and
const volatile versions. A user could still declare a const value<const T>, but the implicit
conversions would not be taken care of automatically since the semantics of the wrapper would
be considered as unde�ned.

3.3 Mapping with equivalences

A second possible option is to consider that some of the wrapped cases are equivalent:

5

Mapping with eqivalences: 8 non-wrapped cases ↔ 12 wrapped cases
Description Non-wrapped version Wrapped version

mutable value T value<T>

constant value const T
value<const T>
const value<T>

const value<const T>
reference to mutable T& reference<T>

reference to constant const T&
reference<const T>
const reference<T>

const reference<const T>
mutable pointer to mutable T∗ pointer<T>
mutable pointer to constant const T∗ pointer<const T>
constant pointer to mutable T∗ const const pointer<T>
constant pointer to constant const T∗ const const pointer<const T>

The advantage of this option is that every cv-quali�ed wrapper has a well-de�ned seman-
tic, leaving no room for unde�ned behavior. However, taking care of implicit conversions be-
comes very tricky: since a value<const T> is considered equivalent to a const value<T> and
reference<const T> is considered equivalent to a const reference<T>, value<const T>&
and const value<T> should be both implicitly convertible to reference<const T> and also
const reference<T>. With the volatile quali�er, ensuring the right implicit conversions be-
comes even more tricky. If this solution is chosen, the authors of this paper are asking for guid-
ance on the minimal set of implicit constructors required to perform the conversions to ensure
the equivalences.

4 Conclusion

In this short paper, we raised questions about the semantics of templated wrapper classes. These
questions originally came from research on bit utilities during the standardization process of
P0237. As these questions are likely to arise for other proxy iterators and wrappers classes we
are asking for more general guidance on this problem, thinking that this guidance would also
ensure good practices outside of the standard library.

5 Acknowledgements

The authors would like to thank Tomasz Kaminski who raised the questions on making bit_value
a template class. The authors would also like to thank the contributors of the ISO C++ Standard
- Discussion and of the ISO C++ Standard - Future Proposals groups for their reviews and com-
ments.

Vincent Reverdy and Robert J. Brunner have been supported by the National Science Founda-
tion Grant AST-1313415. Robert J. Brunner has been supported in part by the Center for Advanced
Studies at the University of Illinois.

6

https://groups.google.com/a/isocpp.org/forum/#!forum/std-discussion
https://groups.google.com/a/isocpp.org/forum/#!forum/std-discussion
https://groups.google.com/a/isocpp.org/forum/#!forum/std-proposals

6 References

[Becker, 2014] Becker, P. (2014). Proposal for unbounded-precision integer types. Technical
Report N4038, ISO/IEC JTC1/SC22/WG21 - The C++ Standards Committee.

[Niebler, 2015] Niebler, E. (2015). Proxy iterators for the ranges extensions. Technical Report
P0022R1, ISO/IEC JTC1/SC22/WG21 - The C++ Standards Committee.

[Reverdy and Brunner, 2016a] Reverdy, V. and Brunner, R. J. (2016a). On the standardization of
fundamental bit manipulation utilities. Technical Report P0237R0, ISO/IEC JTC1/SC22/WG21
- The C++ Standards Committee.

[Reverdy and Brunner, 2016b] Reverdy, V. and Brunner, R. J. (2016b). Wording for fundamental
bit manipulation utilities. Technical Report P0237R1, ISO/IEC JTC1/SC22/WG21 - The C++
Standards Committee.

[Reverdy et al., 2016] Reverdy, V., Brunner, R. J., and Myers, N. (2016). Wording for fundamental
bit manipulation utilities. Technical Report P0237R2, ISO/IEC JTC1/SC22/WG21 - The C++
Standards Committee.

7

	Introduction
	The problem
	Values, references and pointers
	Semantics of the non-wrapped cases
	Semantics of the wrapped cases
	Questions to be answered

	Some possible options
	Preliminary note
	Exact mapping and undefined behavior
	Mapping with equivalences

	Conclusion
	Acknowledgements
	References

