
Document number: D0769R0
Date: 2017-08-25
Author: Dan Raviv <dan.raviv@gmail.com>
Audience: LEWG => LWG

Add shift to <algorithm>

I. Introduction
This paper proposes adding shift algorithms to the C++ STL which shift elements forward or backward 
in a range of elements.

II. Motivation and Scope
Shifting elements forward or backward in a range is a basic operation which the STL should allow 
performing easily. An important use case is time series analysis algorithms used in scientifc and 
fnancial applications.

The scope of the proposal is adding the following function templates to <algorithm>:

template<class ForwardIt>
ForwardIt shift_left(

ForwardIt first, ForwardIt last,
typename std::iterator_traits<ForwardIt>::difference_type n

);

template<class ExecutionPolicy, class ForwardIt>
ForwardIt shift_left(

ExecutionPolicy&& policy, ForwardIt first, ForwardIt last,
typename std::iterator_traits<ForwardIt>::difference_type n

);

template<class ForwardIt>
ForwardIt shift_right(

ForwardIt first, ForwardIt last,
typename std::iterator_traits<ForwardIt>::difference_type n

);

template<class ExecutionPolicy, class ForwardIt>
ForwardIt shift_right(

ExecutionPolicy&& policy, ForwardIt first, ForwardIt last,
typename std::iterator_traits<ForwardIt>::difference_type n

);

A sample implementation which uses std::move to implement shift_left for forward iterators 
and std::move_backward to implement shift_right for bidirectional iterators can be found 
in https://github.com/danra/shift_proposal, though it’s possible more effcient implementations could be
made, since elements are guaranteed to be moved within the same range, not between two different 
ranges.

The sample implementation also implements a non-trivial algorithm for shift_right of forward, 
non-bidirectional iterators.

Page 1 of 4

https://en.wikipedia.org/wiki/Time_series
https://github.com/danra/shift_proposal


D0769R0 – Add shift to <algorithm>

III. Possible Objections and Responses
1) Objection: Shifting can be done by using std::move (in <algorithm>).

Response: Which of std::move or std::move_backward must be used depends on the 
shift direction, which is error-prone. It also makes for less readable code; consider

std::shift_right(v.begin(), v.end(), 3);
vs.
std::move_backward(v.begin(), v.end() - 3, v.end());

In addition, std::shift_right and std::shift_left may be implemented more 
effciently than std::move and std::move_backward, since elements are guaranteed to be 
moved within the same range, not between two different ranges.

Also, ranges of forward, non-bidirectional iterators cannot be shifted right using either 
std::move or std::move_backward. Such ranges are possible to shift right, though, in O(N) 
time and constant space, as shown in the sample implementation.

2) Objection: Instead of shifting a range, you can use a circular buffer.
Response: A circular buffer is a valid alternative. However, it should not be forced on the 

programmer, and it does have its own limitations:
- In case there are multiple indices into the buffer, all must be updated in some way.
- Similarly, in the common case where there is some mask applied to the buffer which should 

not cycle with the data, the mask indices need to be updated whenever the buffer is cycled.
- A programmer might need to shift elements in non-circular buffers provided by a 3rd-party 

library.

3) Objection: There’s already std::rotate which is similar in functionality.
Response: Shifting just the desired elements would allow for both a more effcient

implementation and clearer semantics in case rotation is not needed.

IV. Impact On the Standard
The only impact on the standard is adding the proposed function templates to <algorithm>.

V. Design Decisions
1) shift_left and shift_right are provided as separate function templates instead of just a 
single shift function template to maximize performance and minimize compiled code size. Since 
shifting left and shifting right may have signifcantly different implementations (as is the case in the 
sample implementation), implementing both shift directions in a single shift function template 
would both require extra conditional logic and inline less easily than the specifc direction shifts.

Given that both shift_left and shift_right are provided, it would still be possible to provide 
shift as well, for convenience, but it seems redundant.

2) std::shift_left should return an iterator to the new end of the shifted range. The beginning of
the shifted range would always be equal to the beginning of the range before the shift, so there is no 
need to also return an iterator to the beginning of the shifted range. (This is similar to how 
std::move only returns an iterator to the end of the moved range).

Page 2 of 4



D0769R0 – Add shift to <algorithm>

Similarly, std::shift_right should return an iterator to the new beginning of the shifted range. 
The end of the shifted range would always be equal to the end of the range before the shift, so there is 
no need to also return an iterator to the end of the shifted range. (This is similar to how 
std::move_backward only returns an iterator to the end of the moved range).

3) After shifting a range by n elements, either to the right or to the left, exactly n elements would be left
“empty”, with their previous values having been shifted to other elements but with no new values 
shifted into them. It’s been suggested to provide function template overloads which with an extra 
filler value parameter which would set all such “empty” elements to its value. However, this has 
been decided to be redundant, since the iterator returned from shift_left / shift_right (see 
(2) above) can be passed to std::fill (along with unchanged begin/end of the range) to fll the 
empty values.

4) std::shift_left without an execution policy or with the standard sequenced_policy 
execution policy moves the shifted elements (those which would still present in the range after the 
shift) in order, similar to how std::move moves elements in order.

Similarly, std::shift_right of bidirectional iterators without an execution policy or with the 
standard sequenced_policy execution policy moves the shifted elements (those which would still 
present in the range after the shift) in reverse order, similar to how std::move_backward moves 
elements in reverse order.

There is no guarantee what order std::shift_right of forward iterators shifts elements in.

5) Shifting a range by more than its length (std::distance(first, last)), either to the left or
to the right, has the effect of shifting out all of the elements, the same as shifting a range by exactly the 
length of the range. This could be defned as undefned behavior instead, but there is would probably be
no extra cost to handle larger shifts, seeing as an implementation would have to handle a shift by 
exactly the length of the range anyway.

6) Shifting a range by a negative n is undefned behavior. (in case shift by zero is decided to be defned 
behavior, see open issues below, shifting by negative n could also be defned behavior and do nothing, 
since it would have no extra cost. However, it’s not really important for a shift by negative n to be 
defned behavior, so it shouldn’t be a factor for deciding on shift by zero being defned or not).

VI. Open Issues
1) Should shift by zero be undefned behavior?

Pro for undefned behavior: Could simplify implementation and optimize performance. For example, in
the sample implementation, since both std::move and std::move_backward have undefned 
behavior when moving a range exactly onto itself, an extra n==0 condition check must be done before 
performing either of them for a shift by zero to have defned behavior.

Pro for defned behavior: It is reasonable to expect a shift by zero to do nothing, so it is programmer-
error-prone to make it undefned behavior.

2) It would be preferable for std::shift_left and std::shift_right to have more generic 
names; the fact that the frst element in a range is the left-most is a matter of convention which is not 
specifed in the standard, and some programmers may think of the frst element as the right most, or 
maybe the top-most, etc.

Page 3 of 4

https://github.com/danra/shift_proposal


D0769R0 – Add shift to <algorithm>

However, std::shift_backward, std::shift_back and std::shift_forward are 
probably all out of the question, since other algorithms exist, e.g., std::move_backward and 
std::copy_backward, in which backward means performing the operation starting from the back 
of the range, instead of from its front.

std::shift_to_front and std::shift_to_back come to mind. Perhaps there are better 
names; ideas would be welcome.

VII. Proposed Wording
TODO

VIII. Acknowledgements
- Special thanks to Walter E. Brown for his comments and guidance writing the paper.
- Special thanks to Casey Carter for his comments and generous code contribution, including a 
shift_right implementation for forward, non-bidirectional iterators.
- Thanks to Alexander Zaitsev, Arthur O’Dwyer, Bryce Glover, Howard Hinnant, Nicol Bolas and Ray 
Hamel for their helpful comments on the paper.

Page 4 of 4


	I. Introduction
	II. Motivation and Scope
	III. Possible Objections and Responses
	IV. Impact On the Standard
	V. Design Decisions
	VI. Open Issues
	VII. Proposed Wording
	VIII. Acknowledgements

