
Toward a vectorization mechanism in C++
Document number: Draft

Version: 0.2
Date: 2012

Vincent Reverdy (vince.rev@gmail.com)
Laboratory Universe and Theories, Observatory of Paris,

5 place Jules Janssen, 92195 Meudon, France

December 24, 2012

Abstract

This proposal concerns the addition of three helper classes to the standard library in
order to provide an easy-to-use vectorization mechanism. The goal is to reduce the current
complexity of implementing new containers with optimized vector operations using generic
tools based on the CRTP technique. It will also provide a common base for all the constant
size vectors and matrices of graphics and scientific librairies. Finally, this proposal should
be able to fill the current lack of vector operations support of the C++ and bring a
standardized answer to a lot of technical and scientific basic problems.

Contents

I Motivation 2

II Impact on the standard 3

III Design decisions 4

IV Technical specifications 5
IV.1 The empty base class std::vectorizer . . . . . . . . . . . . . . . . . . . . . . 6

IV.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
IV.1.2 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

IV.2 The constant size vectorization tool std::static_vectorizer . . . . . . . . . . 7
IV.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
IV.2.2 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

IV.3 The dynamic size vectorization tool std::dynamic_vectorizer . . . . . . . . . 11
IV.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
IV.3.2 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

V Examples of use 14

VI Acknowledgements 14

VII References 14

1



I Motivation

This proposal comes from a simple observation: an impressive number of colleagues working
in a wide variety of engineering and scientific fields are concerned by the lack of standardized
tool to design basic vectors and matrices and many of them emphasize the advantage of lan-
guages like FORTRAN on this specific point. This observation can be easily confirmed by
looking to widely used graphics and scientific libraries and frameworks: oftenly, classes such as
Vector2D, Vector3D, Tensor3D or Matrix4x4 are reimplemented from scratch. Some examples
are given in table 1. This results in a huge development effort to design and optimize standard
operations on simple things like a 3D vector. So the open question addressed here is : what is
the most generic base of all vectorized containers that could be standardized in order to provide
an elegant solution to this problem ?

Before going further, it is important to note two key elements. First, even if std::valarray
provides an optimized mathematical container that supports all basic operations, it is not well
designed for composition or inheritance. Consequently, it cannot be used as a common base
on which one can add new operators or functions. Second, the problem addressed here is not
the same as the one addressed by linear algebra libraries. The goal of the proprosed tool is not
to diagonalize 100× 100 matrices, or to solve sets of hundreds of equations. Consequently, we
also avoid the never ending debate of sparse versus non-sparse mathematical containers. To
summarize, the goal is to provide a generic mechanism that simplifies and unifies the design of
new containers that need optimized standard operations.

This mechanism will reduce the long step of design, implementation and optimization of
basic things like a Vector3D to the simple inheritance from a vectorizer class. A resulting
example of use is provided in listing 1. Finally, these tools will have a wide range of use and
will allow library designers, software developers, engineers and scientists to implement their
own optimized vector containers without having to implement them from scratch.

Listing 1: Basic example of the vectorization syntax

1 template <typename T>
2 class MyVector3D
3 : public std : : s t a t i c_ve c t o r i z e r <T, 3 , size_t , MyVector3D>
4 {/∗ Creates a s t a t i c s i z e v e c t o r ∗/ } ;
5
6 template <typename T, size_t N>
7 class MyVectorN
8 : public std : : s t a t i c_ve c t o r i z e r <T, N, size_t , MyVectorN , N>
9 {/∗ Creates a s t a t i c s i z e v e c t o r ∗/ } ;

10
11 template <typename T, size_t N, size_t M>
12 class MyMatrixNxM
13 : public std : : s t a t i c_ve c t o r i z e r <T, N∗M, size_t , MyMatrixNxM , N, M>
14 {/∗ Creates a s t a t i c s i z e matrix ∗/ } ;
15
16 template <typename T>
17 class MyVector
18 : public std : : dynamic_vectorizer<T, MyVector>
19 {/∗ Creates a dynamic s i z e v ec t o r ∗/ } ;
20
21 template <typename T>
22 class MyMatrix
23 : public std : : dynamic_vectorizer<T, MyMatrix>
24 {/∗ Creates a dynamic s i z e matrix ∗/ } ;

2



Table 1: Examples of basic vectorized containers of some C++ libraries and frameworks.

Library Category Example of containers

Qt Application/GUI
Framework

QVector2D, QVector3D, QVector4D,
QGenericMatrix, QMatrix4x4. . .

VTK Visualization
vtkVector2, vtkVector3, vtkPoints2D,
vtkPoints, vtkMatrix3x3, vtkMatrix4x4,
vtkTensor. . .

OGRE 3D Engine SmallVector, Matrix3, Matrix4. . .
Irrlicht 3D Engine vector2d, vector3d, CMatrix4. . .

OpenSceneGraph 3D Engine Vec2d, Vec3d, Vec4d, Matrix2,
Matrix3. . .

Panda3D 3D Engine LVector2d, LVector3d, LVector4d,
LMatrix3d, LMatrix4d. . .

OpenFOAM Fluid Dynamics scalar, vector, tensor. . .
Lorene Astrophysics Scalar, Vector, Tensor. . .

ROOT Particle Physics

DisplacementVector3D,
DisplacementVector2D, PositionVector3D,
PositionVector2D, Rotation3D, Vector3D,
Point3D. . .

And many others. . . . . . . . .

II Impact on the standard

This proposal is a pure addition to the existing library and consequently it would not affect
existing programs. Nevertheless, it requires the addition of a new header shown in table 2.

Table 2: Summary of affected headers

Subclause Header(s)
IV <vectorizer>

Unless otherwise specified, all components described in this proposal would be declared in
namespace std. Furthermore, unless otherwise specified, all references to components described
in the C++ standard library are assumed to be qualified with std::. The design described in
part III uses only C++11 features and do not require non-standard extension. The technical
specifications presented in part IV would require an extensive use of the type traits of the
standard library. No current element of the standard library would be modified by or would
depend on the tools provided in the vectorizer header.

3

http://qt-project.org/
http://www.vtk.org
http://www.ogre3d.org
http://irrlicht.sourceforge.net
http://www.openscenegraph.org
http://www.panda3d.org
http://www.openfoam.com
http://www.lorene.obspm.fr
http://root.cern.ch


III Design decisions

The design presented in the following is based on original ideas introduced and tested during
the development and implementation of the MAGRATHEA framework1. The philosophy is
quite the same as the one of the iterator class that provides a generic tool to simplify the
creation of new iterators. The goal here is to design helper classes that simplifies the creation
of new vector containers. To do so, the Curiously Recurring Template Pattern (CRTP) idiom
is used. The resulting tools allow to provide all the standard arithmetic operators, iterator
getters, element accessors and some modifier functions to a container just by inheriting from
one of the vectorizer classes and overloading some members as the subscript operator. To
keep the design as simple and as generic as possible, no multidimensional operation is provided
(as the matrix multiplication) but it will be quite easy for the end user to add all the specific
operators he wants to his vectorized classes. This ease of modification is a great advantage of
the mechanism described in the following paragraphs and in the technical section.

Figure 1: Inheritance relation between the three classes of the <vectorizer> header.

The design of the <vectorizer> header consists of three classes as presented in figure 1:

• vectorizer is the base class, mainly used for type traits.
• static_vectorizer is the provided tool to vectorize constant size optimized containers

with the template shape Crtp<typename, Kind...> where typename represents the data
type and where Kind is the integral type of extra arguments as a list of dimensions.

• dynamic_vectorizer is the provided tool to vectorize dynamic size containers with the
template shape Crtp<typename, Kind...> where typename represents the data type and
where Kind is the integral type of extra arguments as a rank.

These three classes are abstract classes with protected destructors and cannot be used di-
rectly. Furthermore, they are empty classes in the sense that they only define methods and no
data member: the actual data contents is owned by the derived classes and is accessed by the
vectorizer classes thanks to the CRTP.

The proposed design has two limitations. First, the inherited containers are required to
have a specific template shape. These template parameters are compatible with standardized
containers like vector<typename> or array<typename, size_t>. If one want to use another
template shape, it can use alias templates or inherit a container with the compatible template
parameters, and inherit from it. Second, one cannot vectorize a container of vectorized con-
tainers due to the use of type traits to distinguish between vector/vector and vector/scalar
operations. This is not a limiting factor for the creation of multidimensional containers if the

1The MAGRATHEA (Multi-cpu Adaptive Grid Refinement Analysis for THEoretical Astrophysics) frame-
work is under active development by V. Reverdy and is expected to be released publicly as an open source
software in 2013.

4



subscript operator allow to iterate over the whole contents and not only over a single dimension.
These limitations, however, are a small price to pay to use generic tools that can automatically
generate all the standard vector operators whatever the container and its contents are.

IV Technical specifications

In all the following, the expression vectorizer class refers to one the three classes of the
<vectorizer> header (see table 3) and the term vectorized refers to any user-defined class
inheriting from one of these classes.

Table 3: Summary of the new classes

Subclause Header Class name
IV.1 <vectorizer> vectorizer
IV.2 <vectorizer> static_vectorizer
IV.3 <vectorizer> dynamic_vectorizer

Optimization through expression template or the use of SIMD instructions are not explicitely
required by technical specifications and these decisions are left to implementers.

5



IV.1 The empty base class std::vectorizer

IV.1.1 Summary

The vectorizer class is an empty class that defines general-purpose functions for vec-
torization management. It plays an important role to detect vectorized containers through
is_base_of<vectorizer> as it does not have any template parameter. Its contents is summa-
rized in table 4. This class is not intended to be derived by the end-user: one should inherit a
vectorized container from either static_vectorizer or dynamic_vectorizer.

Table 4: Summary of vectorizer contents

Section Category Specifier Name Description

IV.1.2 Class none vectorizer class declaration

Lifecycle public (constructor) implements default construction
Lifecycle protected (destructor) protects the default destructor
Lifecycle public operator= deletes the assignment operator

Method public
static

get
gets vectorized/non-vectorized ele-
ments in an unified way

Method public
static

set
sets the contents of a vectorized con-
tainer

Method public
static

is_same_size compares the sizes of two containers

Method public
static

check_size checks the sizes of two containers

Method public
static

equal
compares the contents of two con-
tainers (equality)

Method public
static

not_equal
compares the contents of two con-
tainers (difference)

Method public
static

combine
combines several vectorized contain-
ers through a transversal reduction
operation

Function friend swap specializes the swap algorithm
Function friend operator<< performs stream I/O (output)
Function friend operator>> performs stream I/O (input)

IV.1.2 Declaration

The vectorizer class should have a declaration equivalent to:

1 class v e c t o r i z e r

6



IV.2 The constant size vectorization tool std::static_vectorizer

IV.2.1 Summary

The static_vectorizer class is an empty class that vectorizes operations over constant
size containers thanks to the CRTP idiom. Its contents is summarized in tables 5, 6 and 7.

Table 5: Summary of static_vectorizer declaration, traits and constants

Section Category Specifier Name Description

IV.2.2 Class none static_vectorizer declaration

Member type public value_type Type

Member type public size_type Unsigned integral type
Member type public difference_type Signed integral type
Member type public reference value_type&

Member type public const_reference const reference

Member type public pointer value_type*

Member type public const_pointer const pointer

Member type public iterator pointer

Member type public const_iterator const iterator

Member type public reverse_iterator reverse_iterator<iterator>

Member type public
const_reverse_
iterator

reverse_iterator<const_
iterator>

Member type public vectorizer_type
static_vectorizer<Type, Size,
Kind, Crtp, Params...>

Member type public vectorized_type Crtp<Type, Params...>

Member type public params_type Kind

Constant
public
static
const bool

is_static true

Constant
public
static
const bool

is_dynamic false

Constant
public
static
const bool

is_mask is_same<Type, bool>::value

Constant
public
static
const Kind[]

params Params...

7



Table 6: Summary of static_vectorizer iterators, arithmetic operators and comparators

Section Category Specifier Name Description

Method public

begin
cbegin
end
cend
rbegin
crbegin
rend
crend

returns an iterator to the specified
position in the specified direction

Method public

operator+
operator-
operator∼
operator!

applies unary operator to each ele-
ment of the vectorized container

Method public

operator+=
operator-=
operator*=
operator/=
operator%=
operator&=
operator|=
operator^=
operator<<=
operator>>=

applies compound assignment oper-
ator to each element of the vector-
ized container

Function friend

operator+
operator-
operator*
operator/
operator%
operator&
operator|
operator^
operator<<
operator>>
operator&&
operator||

applies binary operators to each el-
ement of two vectorized containers,
or a vectorized container and a value

Function friend

operator==
operator!=
operator<
operator>
operator<=
operator>=

compares two vectorized containers
or a vectorized container with a
value

8



Table 7: Summary of static_vectorizer methods

Section Category Specifier Name Description

Lifecycle public (constructor) implements construction
Lifecycle protected (destructor) protects the default destructor
Lifecycle public operator= assigns contents
Lifecycle public assign assigns contents

Method public operator[] calls the CRTP subscript operator
Method public size returns the size of the container

Method public resize
throws runtime exception (only for
compatibility purposes)

Method public empty
checks whether the vectorized con-
tainer is empty

Method public at
access specified element with
bounds checking

Method public cat circularly access specified element
Method public front access the first element
Method public back access the last element
Method public index gets the index of a reference
Method public cast casts contents to another data type
Method public swap swaps with another container

Method public fill
assigns some contents to the con-
tainer

Method public change
assigns some contents to a copy of
the container

Method public modify
applies a function to every element
of the container

Method public apply
applies a function to every element
of a copy of the container

Method public min
returns a reference to the first min-
imum value

Method public max
returns a reference to the first max-
imum value

Method public reduce
applies a reduction operation over
the container elements

Method public
static

mask constructs a boolean mask

9



IV.2.2 Declaration

The static_vectorizer class should have a declaration equivalent to:

1 template <typename Type ,
2 size_t Size ,
3 typename Kind ,
4 template <typename , Kind . . . > class Crtp ,
5 Kind . . . Params>
6 class s t a t i c_v e c t o r i z e r
7 : public v e c t o r i z e r

where:

• Type is the container data type.
• Size is the constant number of elements of the container.
• Kind is an integral type (oftenly size_t).
• Crtp is the derived container type.
• Params... is a list of parameters (e.g. a list of dimensions for a constant size multidi-

mensional array).

Furthermore, the vectorized container Crtp should fulfill the following requirements:

• it has to inherit from static_vectorizer<Type, Size, Kind, Crtp, Params...>.
• its template shape has to be Crtp<typename, Kind...> where Kind is an integral type.
• its size has to be known at compile-time and passed as the Size template parameter.
• it has to provide the subscript operator[] in both const/non-const versions.

10



IV.3 The dynamic size vectorization tool std::dynamic_vectorizer

IV.3.1 Summary

The dynamic_vectorizer class is an empty class that vectorizes operations over dynamic
size containers thanks to the CRTP idiom. Its contents is summarized in tables 8, 9 and 10.

Table 8: Summary of dynamic_vectorizer declaration, traits and constants

Section Category Specifier Name Description

IV.2.2 Class none static_vectorizer declaration

Member type public value_type Type

Member type public size_type Unsigned integral type
Member type public difference_type Signed integral type
Member type public reference value_type&

Member type public const_reference const reference

Member type public pointer value_type*

Member type public const_pointer const pointer

Member type public iterator pointer

Member type public const_iterator const iterator

Member type public reverse_iterator reverse_iterator<iterator>

Member type public
const_reverse_
iterator

reverse_iterator<const_
iterator>

Member type public vectorizer_type
dynamic_vectorizer<Type,
Kind, Crtp, Params...>

Member type public vectorized_type Crtp<Type, Params...>

Member type public params_type Kind

Constant
public
static
const bool

is_static false

Constant
public
static
const bool

is_dynamic true

Constant
public
static
const bool

is_mask is_same<Type, bool>::value

Constant
public
static
const Kind[]

params Params...

11



Table 9: Summary of dynamic_vectorizer iterators, arithmetic operators and comparators

Section Category Specifier Name Description

Method public

begin
cbegin
end
cend
rbegin
crbegin
rend
crend

returns an iterator to the specified
position in the specified direction

Method public

operator+
operator-
operator∼
operator!

applies unary operator to each ele-
ment of the vectorized container

Method public

operator+=
operator-=
operator*=
operator/=
operator%=
operator&=
operator|=
operator^=
operator<<=
operator>>=

applies compound assignment oper-
ator to each element of the vector-
ized container

Function friend

operator+
operator-
operator*
operator/
operator%
operator&
operator|
operator^
operator<<
operator>>
operator&&
operator||

applies binary operators to each el-
ement of two vectorized containers,
or a vectorized container and a value

Function friend

operator==
operator!=
operator<
operator>
operator<=
operator>=

compares two vectorized containers
or a vectorized container with a
value

12



Table 10: Summary of dynamic_vectorizer methods

Section Category Specifier Name Description

Lifecycle public (constructor) implements construction
Lifecycle protected (destructor) protects the default destructor
Lifecycle public operator= assigns contents
Lifecycle public assign assigns contents

Method public operator[] calls the CRTP subscript operator
Method public size returns the size of the container

Method public resize
throws runtime exception (only for
compatibility purposes)

Method public empty
checks whether the vectorized con-
tainer is empty

Method public at
access specified element with
bounds checking

Method public cat circularly access specified element
Method public front access the first element
Method public back access the last element
Method public index gets the index of a reference
Method public cast casts contents to another data type
Method public swap swaps with another container

Method public fill
assigns some contents to the con-
tainer

Method public change
assigns some contents to a copy of
the container

Method public modify
applies a function to every element
of the container

Method public apply
applies a function to every element
of a copy of the container

Method public min
returns a reference to the first min-
imum value

Method public max
returns a reference to the first max-
imum value

Method public reduce
applies a reduction operation over
the container elements

Method public
static

mask constructs a boolean mask

13



IV.3.2 Declaration

The dynamic_vectorizer class should have a declaration equivalent to:

1 template <typename Type ,
2 typename Kind ,
3 template <typename , Kind . . . > class Crtp ,
4 Kind . . . Params>
5 class dynamic_vector izer
6 : public v e c t o r i z e r

where:

• Type is the container data type.
• Kind is an integral type (oftenly size_t).
• Crtp is the derived container type.
• Params... is a list of parameters (e.g. a rank for a dynamic size multidimensional array).

Furthermore, the vectorized container Crtp should fulfill the following requirements:

• it has to inherit from dynamic_vectorizer<Type, Kind, Crtp, Params...>.
• its template shape has to be Crtp<typename, Kind...> where Kind is an integral type.
• it has to provide a size() method that returns the current size of the container.
• it has to provide a resize() method that modifies the size of the container.
• it has to provide the subscript operator[] in both const/non-const versions.

14



V Examples of use

VI Acknowledgements

VII References

15


	 Motivation
	 Impact on the standard
	 Design decisions
	 Technical specifications
	The empty base class std::vectorizer
	Summary
	Declaration

	The constant size vectorization tool std::static_vectorizer
	Summary
	Declaration

	The dynamic size vectorization tool std::dynamic_vectorizer
	Summary
	Declaration


	 Examples of use
	 Acknowledgements
	 References

