
D0779R0: Proposing operator try()

Document #: D0779R0 draft 2
Date: 2017-10-12
Project: Programming Language C++

Evolution Working Group
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

Something which would be useful to the LEWG Expected proposal [P0323], the C++ Monadic
Interface proposal [P0650] and the proposed Boost.Outcome library https://ned14.github.io/

outcome/ would be if we could customise the try operator in a similar way to how Swift1 and
Rust2 implement try. This allows one to more succinctly implement a lightweight failure handling
alternative to exception throws without typing so much tedious boilerplate all the time.

Example in code:

1 // Without operator try
2 template<class T> using expected =
3 std::expected<T, std::error_code>;
4

5 expected<int> get_int() noexcept;
6

7 expected<float> get_float() noexcept
8 {
9 expected<int> _int = get_int();

10

11 // If get_int() failed, propagate the error
12 if(!_int)
13 return unexpected(_int.error());
14 float ret = (float) *_int;
15

16 // If the float cannot wholly represent
17 // the int, return an error
18 if((int) ret != *_int)
19 return unexpected(std::errc::

result_out_of_range);
20

21 // Otherwise return success
22 return ret;
23 }

1 // With operator try
2 template<class T> using expected =
3 std::expected<T, std::error_code>;
4

5 expected<int> get_int() noexcept;
6

7 expected<float> get_float() noexcept
8 {
9 int _int = try get_int();

10

11

12

13

14 float ret = (float) _int;
15

16 // If the float cannot wholly represent
17 // the int, return an error
18 if((int) ret != _int)
19 return unexpected(std::errc::

result_out_of_range);
20

21 // Otherwise return success
22 return ret;
23 }

In other words, we just want to ‘inject’ some type-specific boilerplate into the calling scope in a
1The try keyword in Swift (https://developer.apple.com/library/content/documentation/Swift/Conceptual/

Swift_Programming_Language/ErrorHandling.html).
2The try! macro in Rust (https://doc.rust-lang.org/std/macro.try.html).

1

mailto:s_sourceforge@nedprod.com
https://ned14.github.io/outcome/
https://ned14.github.io/outcome/
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html
https://doc.rust-lang.org/std/macro.try.html


similar way to how the [N4680] Coroutines TS implements co_await.

1 Motivation

1.1 Frequency of use

Those who have not programmed in Rust nor Swift, and are not practised in writing code which
uses Expected|Outcome extensively, are not aware how frequently one performs the try operation.

With C++ exception handling, the points at which control flow can change are invisible. This is
not the case with Expected|Outcome code where the programmer must explicitly annotate each
potential control flow change point with either explicit if logic, or a try. For obvious reasons, these
rapidly proliferate and become tedious to constantly write, so programmers will seek shortcuts to
avoid constantly writing the same boilerplate again and again.

Due to such frequency of use, without language support for try, one inevitably would use a C macro
expanding into a GCC/clang language extension called ‘statement expressions‘3. Here is Outcome’s
implementation:

1 #define OUTCOME_TRYX(m) \
2 ({ \
3 auto &&res = (m); \
4 if(!res.has_value()) \
5 return OUTCOME_V2_NAMESPACE::try_operation_return_as(std::forward<decltype(res)>(res)); \
6 std::forward<decltype(res)>(res).value(); \
7 })

The use of C macros is not ideal. The use of a non-standard language extension is worse again.
This has bothered people enough to seek workarounds by misusing the C++ language.

3https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html

2

https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html


1.2 Failure to standardise this means people will abuse co_await to achieve the
same thing

In September 2017, Facebook Folly’s Optional gained the ability to be awaited upon with co_await4.
This is not a true coroutine await, rather it’s an abuse of awaiting to inject boilerplate due to the
C++ language’s inability to otherwise do this. Quoting from a CppCon 2017 talk called ‘Coroutines:
What can’t they do?’ by Toby Allsopp5:

1 optional<vector<double>> parse_vector(istream& s)
{

2 optional<int> n = parse_int(s);
3 if(!n) return ();
4 vector<double> result;
5 for(int i = 0; i < *n; ++i) {
6 optional<double> x = parse_double(s);
7 if(!x) return {};
8 result.push_back(*x);
9 }

10 return result;
11 }

1 optional<vector<double>> parse_vector(istream& s)
{

2 int n = co_await parse_int(s);
3

4 vector<double> result;
5 for(int i = 0; i < *n; ++i) {
6

7

8 result.push_back(co_await parse_double(s));
9 }

10 co_return result;
11 }

I find this misuse very troubling for all the obvious reasons, and I hope so do you as well. This
needs to be nipped in the bud before it goes septic and starts appearing across the C++ ecosystem.

2 Solutions

I will propose two potential solutions to the problem of injecting the necessary type-specific boiler-
plate for an operator try: (i) a narrow proposal and (ii) a wide proposal.

2.1 Implement operator try just like operator co_await:

1 template <class T, class E>
2 constexpr auto operator try(std::expected<T, E> v) noexcept
3 {
4 struct tryer
5 {
6 std::expected<T, E> v;
7

8 constexpr bool try_return_immediately() const noexcept { return !v.has_value(); }
9 constexpr auto try_return_value() { return std::move(v).error(); }

10 constexpr auto try_value() { return std::move(v).value(); }
11 };
12 return tryer{ std::move(v) };
13 }

4https://github.com/facebook/folly/blob/master/folly/Optional.h
5https://www.youtube.com/watch?v=mlP1MKP8d_Q, about 30 mins in.

3

https://github.com/facebook/folly/blob/master/folly/Optional.h
https://www.youtube.com/watch?v=mlP1MKP8d_Q


14

15

16 // Introductory example expanded
17 template<class T> using expected = std::expected<T, std::error_code>;
18

19 expected<int> get_int() noexcept;
20

21 expected<float> get_float() noexcept
22 {
23 int _int = try get_int(); /* --> auto __unique = operator try(get_int());
24 if(__unique.try_return_immediately())
25 return __unique.try_return_value();
26 _int = __unique.try_value();
27 */
28

29 float ret = (float) _int;
30

31 // If the float cannot wholly represent
32 // the int, return an error
33 if((int) ret != _int)
34 return unexpected(std::errc::result_out_of_range);
35

36 // Otherwise return success
37 return ret;
38 }

If implementing co_await this way it is is uncontroversial, then I guess so is the above. It solves
the direct problem at hand quickly and simply.

But can we solve this whole class of injecting boilerplate problems in one fell swoop, now and
forever?

2.2 Implement operator try by adding native C++ macros to the language

This section likely could form a paper of its own ,. If you like the idea, please do feel free to submit
a P-paper proposing it. I’m no language person, I’m the wrong one to propose it seriously.

Operator try is hitting the exact same problem as the Coroutines TS ran into when implementing
co_await: boilerplate injection. C++’s current method of injecting boilerplate is the C prepro-
cessor, and it is non-ideal for a long list of reasons which is why the Coroutines TS adopted its
solution which looks exactly like our solution in the preceding section.

But what if C++ had a language feature for injecting boilerplate? Rust has a feature like this
which it calls ‘macros’6. These are normal functions, but their contents (tokens) are injected into
the point of use as-is.

Could we perhaps implement the same thing in C++? Well we can’t use the bang token ‘ !’ because
return!(v); might mean ‘inject contents of the return! macro’ or it might mean ‘return logical
NOT of v’, and the same rationale applies to all C++ operator tokens except possibly for ‘?’ and
‘:’.

6https://rustbyexample.com/macros.html

4

https://rustbyexample.com/macros.html


But it turns out that the ‘#’ token is available to us: the C preprocessor must emit a ‘#’ token if
it is not the first non-whitespace token in a line and is not inside a parameterised macro definition.
Moreover, GCC, clang and MSVC all error out about stray ‘#’ tokens if they leak into the prepro-
cessor output. Therefore, no valid code is out there using the ‘#’ token in identifier names, and is
available to us for this use case.

So let’s turn this idea into example code:
1 /* This function’s identifier ends with a # token, and thus
2 is to be treated as a collection of unprocessed tokens by
3 the compiler. You can template the arguments and contents
4 of course. The identifier is otherwise like a normal free function,
5 they are namespaced, participate in ADL etc.
6

7 These look a little like the GCC/clang extension
8 https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html
9 but they really are a bunch of unprocessed tokens

10 injected into the use site, except for the final
11 expression which is the "output" of the macro.
12 */
13 template<class T> void return#(T v)
14 {
15 if(v > 0)
16 return v;
17 -1; // the output to the call site
18 }
19

20 int function(int a)
21 {
22 // You must call including the ‘#’ so the programmer
23 // and compiler knows that this injects tokens right here
24 int v = return#(a); /* if(a > 0) return a; v = -1; */
25 return v;
26 }

2.2.1 Implementing co_await using these native C++ macros

Let’s see how we might implement co_await using these.

auto ret = co_await awaitable_expr; is effectively this pseudo-code:
1 auto __unique = awaitable_expr;
2 // Is the awaitable in __unique not ready?
3 while(!__unique.await_ready())
4 {
5 // this_coroutine_handle() returns the coroutine_handle<> for this coroutine
6 // Tell the awaitable we are about to suspend
7 __unique.await_suspend(this_coroutine_handle());
8 // Suspend this coroutine
9 __builtin_coroutine_suspend();

10 // When it returns here we are resumed
11 }
12 // Ask the awaitable for the value to emit from the co_await operator
13 auto ret = __unique.await_resume();

5



So instead of the complex operator co_await currently proposed in the Coroutines TS, we get
instead this:

1 void co_await#(auto awaitable_expr)
2 {
3 // Is the awaitable_expr not ready?
4 while(!awaitable_expr.await_ready())
5 {
6 // this_coroutine_handle() returns the coroutine_handle<> for this coroutine
7 // Tell the awaitable we are about to suspend
8 awaitable_expr.await_suspend(this_coroutine_handle());
9 // Suspend this coroutine

10 __builtin_coroutine_suspend();
11 // When it returns here we are resumed
12 }
13 // Ask the awaitable for the value to emit from the co_await operator
14 awaitable_expr.await_resume();
15 }

And voilá, co_await#() nicely replaces co_await in a much more flexible, entirely library de-
fined, fashion which means that the original name of await# can be used instead, along with yield#

and return# instead of the ugly co_return#7. No core C++ language changes with new keywords
needed.

Let’s end with implementing try for Expected using this new mechanism:

1 template <class T, class E>
2 void try#(std::expected<T, E> v)
3 {
4 // If there is an error, propagate that error immediately
5 if(!v.has_value())
6 return std::move(v).error();
7 // Otherwise the output of this macro is the value.
8 std::move(v).value();
9 }

10

11

12 // Introductory example expanded
13 template<class T> using expected = std::expected<T, std::error_code>;
14

15 expected<int> get_int() noexcept;
16

17 expected<float> get_float() noexcept
18 {
19 int _int = try#(get_int());
20 float ret = (float) _int;
21

22 // If the float cannot wholly represent
23 // the int, return an error
24 if((int) ret != _int)
25 return unexpected(std::errc::result_out_of_range);
26

7Me personally I’d have coroutines declare a using namespace std::coroutines; at the top of each coroutine
function. This would tell the compiler that this is (a) potentially a coroutine, watch out for suspension points and
(b) bring in the macro definitions for use without namespace prefixing.

6



27 // Otherwise return success
28 return ret;
29 }

This isn’t quite as nice as the earlier operator try, but it sure beats OUTCOME_TRYX(expr).

3 Acknowledgements

• Vicente J. Botet Escribá for his extensive commentary on earlier drafts of this paper.

• std-proposals for helping me work through the ‘native C++ macros’ idea.

• Michael Park for making available this LaTeX template at https://github.com/mpark/

wg21/.

4 References

[P0650] Vicente J. Botet Escribá,
C++ Monadic interface
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0650r0.pdf

[P0323] Vicente J. Botet Escribá,
A proposal to add a utility class to represent expected object (Revision 4)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r2.pdf

[P0262] Lawrence Crowl, Chris Mysen,
A Class for Status and Optional Value
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0262r0.html

[N4680] Gor Nishanov,
C++ Extensions for Coroutines TS
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4680.pdf

7

https://github.com/mpark/wg21/
https://github.com/mpark/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0650r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0262r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4680.pdf

	Motivation
	Frequency of use
	Failure to standardise this means people will abuse co_await to achieve the same thing

	Solutions
	Implement operator try just like operator co_await:
	Implement operator try by adding native C++ macros to the language
	Implementing co_await using these native C++ macros


	Acknowledgements
	References

