
D0762R0: Concerns about expected<T, E>

from the Boost.Outcome peer review

Document #: D0762R0 draft 2
Date: 2017-10-1
Project: Programming Language C++

Library Evolution Working Group
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

Todo:
• Awaiting new todo items.

In May 2017 one of the liveliest, longest and most detailed peer reviews in some years was held
at the Boost C++ Libraries regarding a proposed Outcome library (https://ned14.github.io/
outcome/). Over 800 contributions were made to the review, and discussion continued long after
the formal end of the review for something approaching three weeks in total.

The v1 library was rejected, but with a surprising amount of consensus on what a v2 design should
look like, and specifically on what expected<T, E> should not look like.

This report summarises the author’s best personal interpretation of those 800+ review contributions.
Unlike the official peer review summary report which can be found at https://lists.boost.org/
boost-announce/2017/06/0510.php, this review also presents the author’s v2 design which he
believes to meet the consensus opinion of the Boost peer review.

I should emphasise that Vicente, who is the champion of the Expected proposal (currently [P0323]),
was a major contributor to the Boost.Outcome v1 peer review. The concerns raised by this paper
are partially points of design disagreement between me and him, partially between Vicente and
the Boost peer review where Vicente disagrees with the Boost majority opinion, but also partially
points of disagreement between the Boost peer review consensus opinion and WG21’s consensus
opinion (i.e. Vicente disagrees with WG21 on the same points as Boost did). I don’t claim that the
concerns raised in this paper are a perfect rendition of the Boost peer review consensus: gauging
a single consensus design from 800+ pieces of often opposing feedback is more of an art than a
science. But I do think that WG21’s present chosen design for Expected is sub-optimal, and could
be better.

My hope is that this paper will spur a reconciliation of design for Expected between the Boost and
WG21 consensus opinions such that the best possible design moves forward for standardisation.

Contents

1 Summary of design differences 2

1

mailto:s_sourceforge@nedprod.com
https://ned14.github.io/outcome/
https://ned14.github.io/outcome/
https://lists.boost.org/boost-announce/2017/06/0510.php
https://lists.boost.org/boost-announce/2017/06/0510.php

1.1 Similarities . 2
1.2 Dissimilarities . 3

2 Discussion of concerns on design differences in priority order 5
2.1 All-wide or all-narrow observers . 5
2.2 Self-disabling implicit constructors . 6
2.3 Standard layout propagation . 7

3 Conclusion 7

4 Acknowledgements 7

5 References 7

1 Summary of design differences

Outcome v2’s most similar objects to Expected are called unchecked<T, E> and checked<T, E>,
both of which are template aliases to a simplified result<T, E>. checked<T, E> throws a bad_result_access
or bad_result_access_with<E> in its wide contract observers. unchecked<T, E> has all-narrow ob-
servers, and thus throws no exceptions at all.

1.1 Similarities

These are the following similarities between expected<T, E> and checked<T, E>:

1. Both are simple vocabulary types representing either a T or an E.

2. Both implicitly construct from a T or something constructible to same.

3. Both make available their T via .value() and their E via .error().

4. Both provide a strong never-empty guarantee.

5. Both provide a .has_value() and an explicit boolean operator test so if(expected) ...

works.

6. Both provide type sugar for wrapping a T or an E to give it unambiguous convertibilty.

7. Both are constexpr friendly.

8. Both preserve triviality of copy, move, assignment and destruction of T and E.

9. Both permit T = void.

10. Both permit const and volatile types which can be very useful sometimes.

11. Both permit implicit or explicit construction from dissimilar instances where both T and E are
implicitly or explicitly constructible.

2

12. Both throw a C++ exception type, with logic error semantics, when one violates a wide
contract observer (e.g. calling .value() when there is no value available).

Both Checked and Expected are very simple vocabulary types, and at first glance look to be almost
identical. There are however quite a lot of differences, most of which stem from the design choices
made by a majority of Boost peer review contributors.

1.2 Dissimilarities

These are the dissimilarities:

1. Checked (and everything in Outcome) replicates std::variant<...>’s constructor design in-
stead of std::optional<T>’s i.e. we implicitly construct from either a T or an E, or any pattern
which could construct to a T or an E, where it is unambiguous (if it could be ambiguous, all
implicit constructors self-disable).

Expected permits implicit construction from T and unexpected<E> only.

2. Checked’s .value() and .error() have wide contracts, with clearly delineated alternative
narrow contract observer functions .assume_value() and .assume_error(). As mentioned
earlier, a different template alias unchecked<T, E> has all-narrow contract observers.

Expected has a wide .value(), but a narrow .error() i.e. access to .error() where there
is no unexpected value is undefined behaviour (narrow contract).

3. Checked does not provide operator*() nor operator->() value observers as it does not model
optional<T> like Expected does.

4. Checked always carries the [[nodiscard]] attribute to ensure the programmer checks the
returned value.

Expected currently does not, and doing so may not be appropriate for some choices of type E
given Expected’s wider intended use case as a primitive building block for other constructs.

5. Checked is never default constructible, thus always forcing the user to specify success or failure
or optional<result<T>> to indicate potential emptiness or not-success-not-failure.

Expected is default constructible if T is default constructible.

6. Checked propagates standard layout-ness of T and E, and is thus intentionally designed for use
from C code as improved interoperation between C++ and C code. We require this specific
layout to be guaranteed:

1 struct
2 {
3 T value;
4 // flags bit 0 set if value contains a T instance (and E is to be ignored)
5 // flags bit 1 set if value does not contain a T (and E is to be observed)
6 // flags bit 4 set if errcode is a generic POSIX errno (std::generic_category, std::errc enum)
7 unsigned int flags;
8 E error;
9 };

3

Historically the C++ standard tries to avoid dictating implementation specifics, and thus
neither does the Expected proposal. I will come back to this point in detail later on why this
might need to change.

7. Checked provides a .has_error() so people write what they mean descriptively, thus reducing
cognitive load on those reading the code.

8. Checked requires type E to be default constructible.

9. Checked’s clarifying type sugar is called success<T = void> and failure<E>. This lets you
unambiguously return either success or failure from a Checked returning function in a cogni-
tively undemanding expression:

1 checked<std::string> get_home_directory() noexcept
2 {
3 if(const char* x = std::getenv(n))
4 return success(x); // could write return x;
5 else
6 // implicitly converts to std::error_code
7 // could return std::errc::no_such_file_or_directory directly
8 return failure(std::errc::no_such_file_or_directory);
9 }

Expected’s type sugar is unexpected<E> which maps almost identically onto failure<E>.
Expected has no corollary to success<T = void> as it does not permit implicit construction
from E.

10. As mentioned earlier, Outcome provides the same implicit constructor design as std::variant<...>
which allows some particularly elegant and succinct usage:

1 checked<HANDLE> open_file(std::filesystem::path path) noexcept
2 {
3 HANDLE h = CreateFile(path.c_str(), GENERIC_READ, 0, NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL);
4

5 // std::error_code constructs from { int, const std::error_category & }
6 if(INVALID_HANDLE_VALUE == h)
7 return { (int) GetLastError(), std::system_category() };
8 return h;
9 }

Expected only provides implicit construction for expected inputs, and thus would require
one to return unexpected(GetLastError(), std::system_category());. As much as that
looks to be only an extra ‘unexpected’ in there, remember that braced initialisation aggregates,
and that becomes tedious after a while when returning nested braced initialisations.

4

2 Discussion of concerns on design differences in priority order

2.1 All-wide or all-narrow observers

Conclusively resolving the debate between wide vs narrow observers, as anyone serving on WG21
for any time is well aware, is unsolvable. Sometimes you want wide contracts (where at runtime
incorrect usage is detected and an exception thrown), sometimes you want narrow contracts (where
at runtime incorrect usage is not detected, thus allowing tooling like the undefined behaviour sani-
tiser or valgrind to trap the incorrectness). Wide contracts require code to handle exception throws,
whilst narrow contracts allow code to assume no exception throws, usually leading to lower devel-
opment and testing costs, and more auditable logic. Narrow contracts can sometimes be checked
for correctness by static analysis, wide contracts never can be as throwing an exception may be the
programmer intended behaviour.

Expected, like Optional, provides mostly narrow observers with the glaring exception of .value(),
which is wide. I’ll freely admit that I consider this design choice to be the worst of both worlds, not
the best of both worlds. Arthur said on std-proposals that WG21 historically uses English words
for wide observers e.g. .at() and punctuation for narrow observers e.g. operator[](). If that
was indeed the convention, then it needs to change because that rule is neither intuitive nor able
to be applied properly to Expected. And besides, we have far more powerful correctness validation
tooling available now such that wide contract observers are a bad way of detecting program logic
errors given the better alternatives now available.

I appreciate that my experience with Optional is not as extensive as others, but I have faced
a codebase in the past using Optional which was written by someone who was not aware that
operator*() and operator->() and .value() do not have the same contract. They had used
each interchangeably, sometimes apparently relying that operator*() will throw on incorrect use,
sometimes losing exception safety because they did not account for .value() being able to throw.

It’s easy to say ‘bad programmers write bad code’, but I think that’s a cop out. Firstly, programmers
tend to be lazy, and like to press fewer keys. So they’ll tend towards operator*() once they realise
it’s there. Before that they probably used .value() because it’s got the word ‘value’ in it, so it stuck
out initially. Where we end up is with incorrectness, but the worst possible kind of incorrectness
because it’s virtually impossible to detect without someone knowledgeable to audit the code, and
it’s especially expensive to fix because somebody must go reason about every use case and replace
with the appropriate observer (or throw the whole thing away like I did, and rewrite again from
scratch with repeated comments sprinkled saying ‘do NOT use value(), not once, not ever in this
code’ as a warning to future maintainers.

The ship has sailed on Optional. But we have no good reason to repeat this design mistake with
Expected.

For simple vocabulary objects like these, a better new convention for WG21 to follow is to provide
a ‘primary’ set of observers which are either all-wide or all-narrow, and then a ‘secondary’ set of
observers with a clearly delineated naming convention which are all exactly the opposite. Like
Outcome does with .value()/.assume_value() and .error()/.assume_error(). And given how
program logic errors are best detected by static analysis, sanitisers etc., the presumption ought to

5

be ‘narrow contracts unless programmer benefiting reason for wide contracts‘.

So I would really urge that Expected’s .value() become narrow like Unchecked’s .value(), perhaps
with free function forms being checking editions i.e. value(expected) is wide, expected.value()
is narrow. That would make all of Expected’s primary observers narrow, and thus generate least
surprise when this object gets used in the wild by ordinary programmers.

2.2 Self-disabling implicit constructors

Most on WG21 will quite rightly feel that implicit construction is dangerous, and that Expected
has made the right choice and Checked has not. However Checked’s implicit constructors are not
unconstrained, and in fact the Boost peer review went into very considerable depth as to exactly
what constraints to impose in order to avoid implicit construction surprises like1:

1 // No, we do not initialise a string here!
2 std::variant<std::string, int, bool> mySetting = "Hello!";

Specifically the Boost peer review came up with these constraints for any of the implicit constructors
to be enabled2:

• T is not constructible from E.

• E is not constructible from T.

This may seem to be overly severe. However, consider the overwhelmingly most likely choices for
type E in users of Checked:

• std::error_code.

• std::exception_ptr.

• A type for which std::is_error_code_enum_v<E> is true or std::is_error_condition_enum_v<E>
is true.

This is the case because Checked (and all the types in Outcome) is specifically intended for use as
a function return type, not as a generic vocabulary primitive type like Expected. We therefore can
over-eagerly disable implicit construction because very few choices of type T being returned from
functions will be constructible into any of the types above, or vice versa. And this has been verified
in a limited amount of empirical testing.

None of this implies that Expected has made the wrong design choice for its constructor design.
It is provided as food for thought with regard to how alternative motivations lead to alternative
designs.

And I ask: what precise problem is WG21 solving with the present Expected design? Because
Outcome solves a precise problem: returning success or failure from functions with predictably

1It’s expensive on compile times, but https://github.com/cbeck88/strict-variant is an example of how this
sort of surprise could be avoided.

2I added an exception to the peer review recommendations in Outcome v2: We ignore this requirement if T =
bool and E is one of the common error types as otherwise we see over eager implicit construction disabling if E is
boolean testable, which is the case for the common error types.

6

https://github.com/cbeck88/strict-variant

low worst case execution times. That leads us, indirectly, to being able to provide safe implicit
construction.

2.3 Standard layout propagation

Yet to write

3 Conclusion

Yet to write

4 Acknowledgements

• Almost all of the content, ideas, critiques and discussion points above came originally from
the Boost peer review of proposed Boost.Outcome which led to the v2 Outcome design, and
the Result object design discussed in this paper. That review was one of the most valuable
I’ve seen at Boost in many years, it ranged both wide and deep over three plus weeks, and as
much as it was very hard work, that kind of peer review really is engineering at its highest
calibre. Thank you boost-dev.

• Vicente J. Botet Escribá for all the work he has done on making Expected possible, and
being such a good sport when I from time to time criticise his Expected design which has
been ongoing now for three years. I hope that he finds the above useful whatever happens to
Result and Expected as far as standardisation goes.

• Andrzej Krzemienski for his ongoing and extensive contributions to Outcome’s design and
development.

• Charley Bay for review managing the Outcome peer review.

• Peter Dimov for suggesting that result<T, E> could be standards material. I hadn’t consid-
ered the merit of it before.

• Paul Bristow who proposed the name “Outcome” for the library after a very extended period
of bike shedding on boost-dev.

• Michael Park for making available this LaTeX template at https://github.com/mpark/

wg21/.

5 References

[P0650] Vicente J. Botet Escribá,
C++ Monadic interface
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0650r0.pdf

7

https://github.com/mpark/wg21/
https://github.com/mpark/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0650r0.pdf

[P0323] Vicente J. Botet Escribá, JF Bastien,
A proposal to add a utility class to represent expected object (Revision 5)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r3.pdf

[P0262] Lawrence Crowl, Chris Mysen,
A Class for Status and Optional Value
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0262r0.html

8

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0262r0.html

	Summary of design differences
	Similarities
	Dissimilarities

	Discussion of concerns on design differences in priority order
	All-wide or all-narrow observers
	Self-disabling implicit constructors
	Standard layout propagation

	Conclusion
	Acknowledgements
	References

