
ABSTRACT

Bult-in arrays of C++ are among various legacy C features that give C++ the power to manage low-level

system resource management. In case of arrays the resource is memory. C-style array has special prop-

erties - such as decaying to pointers, call-by-refrence semantics etc - which make them subtle and diffi-

cult to use in most simple form. This proposal is intended to introduce a new distinct built-in array type

with more robust semantics, specially regarding construction and literals.

REFERENCES

Some addressed issues include:

P0259 :

FIXED_STRING: A COMPILE­TIME STRING

by Michael Price & Andrew Tomazos

N4236:

A COMPILE-TIME STRING LIBRARY TEMPLATE WITH UDL OPERATOR TEMPLATES

by Michael Price

N4121:

COMPILE-TIME STRING: STD::STRING_LITERAL<N>

by Andrew Tomazos

P0373:

PROPOSAL OF FILE LITERALS

by Andrew Tomazos

Orthogonal papers include:

P0341:

PARAMETER PACKS OUTSIDE OF TEMPLATES

by Mike Spertus

Full-Featured Value-Semantic Arrays

Doc. no. P0442R0

Date: 10/16/2016

Project: Programming Languages C++

Audience: Core Language Work Group, Evolution Working Group

Reply-to: Farideddin Mehrabi <farid.mehrabi@gmail.com>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0255r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4236.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4121.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0373r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0341r0.html

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 1 of 8

CONTENTS

Abstract ... 0

References .. 0

P0259 : .. 0

N4236: ... 0

N4121: ... 0

P0373: ... 0

P0341: ... 0

1. The Age-Old Wound .. 2

1.1 Decaying VS Type-Erasure ... 2

 Type-Erasure ... 2

 Decaying .. 2

1.1.1 ‘Character Array’ and ‘Character String’ ... 2

1.1.2 Array Literal(Initializer) ... 3

1.2 consexpr array/string .. 3

1.3 By-Reference Semantics ... 3

2. Proposed Semantics .. 3

3. Proposed Syntax ... 4

3.1 Array object instance declaration ... 4

3.2 ‘C++-style’ array constexpr initializer .. 4

3.2.1 Named array initialization syntax: .. 4

3.2.2 Unnamed array initialization syntax ... 4

3.3 Character array initializer .. 5

4. Challenges ... 6

4.1 initializer_list ... 6

5. Effects on STD Library ... 6

6. Subsidiary Proposals ... 7

6.1 Keyword ‘record_file’ .. 7

 Pre-compile action: ... 7

 Post-build Binary link: ... 7

6.1.1 Proposed syntax .. 7

6.2 Single-quoted “ operator'’ ” .. 7

7. The horizon ... 8

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 2 of 8

1. THE AGE-OLD WOUND

C-style arrays features:

 Are passed by reference in function calls rather than by values

 There are no array literal constants, ‘std::initializer_list’ is used instead

 Are not constexpr-able because nor is ‘std::initializer_list’.

 Decay to pointers

 The highest order dimension of C-styke array can be implicit:
 element_type array_obj [] [dim2] [dim1];

 that is because the array can decay to pointers.

1.1 DECAYING VS TYPE-ERASURE

 Type-Erasure is a well-known method of converting static polymorphism to dynamic

polymorphism. The mechanism is simple: capture the runtime features of underlying

type in a (partialy) type-agnostic handle and keep the - otherwise lost – metadata us-

ing either the bult-in polymorphism features (the ‘virtual’ keyword), or some manual

library hack(eg. Type index no. in ‘std::variant’).

 Decaying is some unavoidable implicit convertion to a (partialy) type-agnostic handle and per-

manently lose the important meta-data. Keeping track of the the - otherwise lost – metadata is

burdened to user code.

 In case of array decay, the handle is the pointer, and metadata is the element-count or simply

size of the array.

1.1.1 ‘Character Array’ and ‘Character String’

In C/C++ as well as many other programming languages, ‘character string’ has been considered and im-

plemented as type-erasure on ‘character array’(erase the number of characters from the type and keep

with data). In contrast to many other languages C (and inherently C++) have tried to keep the implemen-

tation of string in the library rather than the core language (because of diversity and complexty of availa-

ble implementations).

1.1.1.1 The Scar: String literals

Robust programming without literals – specifically without string literals – is impossible. But since there

is no built-in string type in C/C++ and array syntax and semantics are too limiting, c-style string literals

have become an ever-lasting singularity in the core language; C-style ‘string literal’ is implemented via

type-erasure on character array (yes, null-termination is an implicit way of keeping metadata about size

of the string) in a language that does not define character string in its core. Interestingly, std::string does

not follow trend of C in its implementation; it stores size and data explicitly in separate encapsulated

members – rather than the traditional null-terminated sequence of characters. The new C++-style array

and string literal syntax discussed in the present paper are meant to bypass such complexities by providing

the programmer with maximum metadata available at compile-time, because dynamic polymorphism is

an always present approach that is easily implemented troughout type-erasure (size-erasure).

1.1.1.1.1 C++ style character array literal

Since C/C++ doesn’t intend to supply ‘string’ as a built-in class, in the era of template meta programming,

we can introduce ‘C++ style character array literal’ as syntax suger to simplify initialization of C++-style

character array which is not supposed to decay to pointers.

‘C++ style character array literal’ - In contrast to C-style string literals - won’t encourage any specific im-

plementation of size-erasure on character arrays.

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 3 of 8

1.1.2 Array Literal(Initializer)

Since - back in good old ‘C’ days -array Initializers did not seem as crucial as string literals, for relatively

long period C++ lacke true Array Literals. Of course it has always been possible to initialize a named array

upon its declaration/definition, but what about an unnamed array?
auto & char_6 = ”12345” ; // OK: char (& char_6) [6];
auto & int_6 = {1,2,3,4,5,6} ; // ERROR: NOT int (& int_6) [6];

1.1.2.1 Latest Surgery: ‘std::initializer_list’

The problem with array literals punched into the face by the imergence and flourishment of generic con-

tainer types who needed some sort of unnamed array literal for initialization. The solution came out to

be a magical size-erased array which was considered part of the library - while not providing any imple-

mentation regarding its own initialization!!!

1.2 CONSEXPR ARRAY/STRING

There have been demands in template/meta programming to have array/string constexpr values as none-

type template parameters. But array/string literals(initializer_list/null-terminated strings) are inherently

not constexpr-able for known solid reasons.

1.3 BY-REFERENCE SEMANTICS

In contrast to all other intrinsic and most library types, C-style arrays –unless wrapped in some other UDT-

are passed by reference in function calls. This used to be bothersome before the introduction of library

class ‘std::array’ that also alleviated the issue of decaying to pointers and index overrun.

2. PROPOSED SEMANTICS

A ‘C++-style’ array is:

 a complete value type

 copy-able from same type

 movable

 Assignable from same type

 Constexpr-able

 Does not decay to pointers.

 cv-qualification of the array is same as that of its elements (just like C-style arrays)

 Cannot be copied or assigned from an array of larger element count:
Consider ‘cpp_array<typename, size_t>’ as an alise for a ‘C++-style’ array:

 cpp_array< source_type,source_count> source;
 cpp_array< target_type,target_count> target{source};

the above snippet would compile if and only if :
 ‘source_type’ is convertible to ‘target_type’ and
 ‘target_count’ not larger than ‘source_count’ and

 ‘source_type{}’ is implicit, well-define and accessible; so that excess elements are
(quasi-)default constructed.

Another option would be exact match between element types and/or counts.
Conjunction with C-style arrays:

 It can be implicitly copied to a c-style array.

 It can be explicitly “static_cast”ed to/from a reference of c-style array with complying dimen-
sions and same basic element type:

 It can be safely “reinterpret_cast”ed to/from a reference of any array with same size, alignment
and basic element type.

 It can be assigned and explicitly copied from a c-style array with complying dimensions and
same basic element type.

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 4 of 8

3. PROPOSED SYNTAX

The only syntactic difference from C-style array is in object declaration and initialization. Indexing would

be as before.

3.1 ARRAY OBJECT INSTANCE DECLARATION

Either:
 element_type array_obj [{element_count}];

Or:
 element_type array_obj [<element_count>];

Or:
 element_type array_obj [element_count ++];

Or:
 element_type array_obj [- element_count];

The third syntax reflects C++-style of the array, while the fourth seems easier to implement -though it is

more controversial, less readable/safe to permit negative size. But I prefer the first and second syntax.

Any of the above syntaxes enjoys the advantage of easily chaining multiple dimensions of mixed C/C++

styles:
 element_type array_obj [{dim1}] [dim2] [{dim1}];

3.2 ‘C++-STYLE’ ARRAY CONSTEXPR INITIALIZER

3.2.1 Named array initialization syntax:

The most definite syntax is:
 constexpr element_type array_obj [{N}] {value_1, …, value_N};

Type of ‘{value_1, …, value_N}’ is proposed to be C++-style array of ‘N’ elements if and only if the values

have a common type wich is the element type. So, what about the ‘std::initializer_list’? That is

the subject of initializer_list section.

3.2.1.1 Array initialization syntax with implicit dimension

 ‘C++-style’ array does not decay to pointers; therefore in contrast to ‘C-style ‘arrays, the element count

of ‘C++-style’ array can only be omitted if initializer immediately follows the declaration, so that the

type is fully specified:
 constexpr int array_int [{}] {1, 2, 3}; // OK: int array_int [{3}]
 constexpr int array_int [{}]; // compile error: size unknown

3.2.2 Unnamed array initialization syntax

Considering lambda syntax, following proposition are made:

3.2.2.1 explicit-type array initializer:

 auto & array_explicit = element_type [{N}] {element_1, …, element_N};

3.2.2.2 Implicit-type array initializer:

Element type is deduced as the common type of all provided elements by means of narrowing:
 auto & array_implicit_type = [{N}] {element_1, …, element_N};

size can be implicit in either of the above syntaxes:
 auto & array_implicit_size = element_type [{}] {element_1, …, element_N};
 auto & array_implicit = [{}] {element_1, …, element_N};

It is assumed that simple curly braces (‘{a,b,c…}’) are reserved for built-in tuple (P0341) but with proper

narrowing, arrays can be constructed from built-in tuples Character array initializer. In either case one can

write:
 auto list = {1, 2, 3};//OK: int list[{3}]

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0341r0.html

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 5 of 8

3.3 CHARACTER ARRAY INITIALIZER

Now that we are going to have constexprable arrays, we can declare a neat syntax substitution for P0259,

N4236, N4121 ,et al. Single quoted none-null terminated character literals are proposed as constexpr

C++ arrays:
 constexpr char cppstr [{3}] =’123’;

The reason character literal and C-style string literal use different quoting is that double quotes implicitly

pad one extra null byte to the end of array. But with C++-style arrays, no extra byte is padded and no

syntax ambiguity is introduced.

Eventhogh I don’t see any problem in allowing single element array being implicitly constructed from an

element, in order to be conservative, single element character array is explicitly initialized form single

character:
 constexpr char cppstr [{1}] ={’1’};

Concatenation and prefixes can be applied (just like C-style literals):
 constexpr wchar cppstr [{6}] = w’123’ w’456’;
 constexpr char cpp_r_str [{7}] = R’(reg_exp)’;//compare R”(reg_exp)”

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0255r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4236.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4121.pdf

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 6 of 8

4. CHALLENGES

4.1 INITIALIZER_LIST

Roughly speaking the ‘std::initializer_list’ was originally introduced as a magic solution for the

lack of array literals. Now the magic is gone and it can be implemented as some type-erasure (remove

the fixed element count) on C++-style array (possibly via the ‘alloca’ function to avoid heap allocation):
template<class Elem>
struct initializer_list :
 std::pair<const Elem* const, const Elem*const>
{
 typedef std::pair<const Elem* const, const Elem*const> pair;
 typedef const Elem value_type;
 typedef value_type& reference;
 typedef value_type& const_reference;
 typedef size_t size_type;
 typedef value_type* iterator,pointer_type;
 typedef value_type* const_iterator;
private:
 initializer_list(pointer_type ptr, size_type sz)
 : pair {ptr,ptr+sz}
 {}
public:
 initializer_list()
 : pair {nullptr,nullptr}
 {}
 template<size_t N>
 initializer_list(value_type(&arr)[{N}])
 : initializer_list {new(on_stack) value_type [N]{ arr },N}
 {}
 ~initializer_list() {
 for (auto ptr = end();ptr >= begin();)
 (--ptr)->~Elem();
 dispose(ptr);
 }
 iterator begin()const {return (first);}
 iterator end() const {return (second);}
 size_type size() const {return ((size_type)(second - first));}
};

5. EFFECTS ON STD LIBRARY

 It is good for container types to declare array conversion constructors, although initializer_list

constructor can compensate for them.

 Type traits, iterator and basic meta type libraries (eg. ‘tuple_size’, ‘tuple_element’) should be

declared to comply with ‘C-style’ arrays.

 ‘string’ library also needs an update to erase the type (element count) of ‘C++-style’ character

array and provide some extra convenience access and convertion methods.

 ‘array_view’ needs to cover ‘C++-style’ arrays too.

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 7 of 8

6. SUBSIDIARY PROPOSALS

6.1 KEYWORD ‘RECORD_FILE’

There has been P0373 to introduce some new mechanism that can convert a file on the compiler host to

an array of bytes. This would simplify design of resource compilers in GUI libraries; they usually use one

of the approaches:

 Pre-compile action: Convert the required binary file to C++ source file (Qt, emWin…)

 Post-build Binary link: link the binary file along with some magic metadata (VS…)

By introducing a standard keyword most of the job gets done. Writing some simple compile time parsers

may also become possible. The proposed approach in present document follows similar rationale but

with different syntax.

The main semantics difference is that P0373 divides files into binary and text files which is a unix/POSIX

based categorization adopted by some other OS families, but on some file systems - in order to optimize

storage and access - there is the ability to treat files of specific fixed-size record types differently. Division

to text/binary categories is not proposed here and binary format is the default, but if needed this syntax

may be modified to support extra parameters to state compile-time parsing options.

Another difference is that P0373 does not discuss the underlying container type to keep the constexpr

result. Even if P0373 is preferable over ‘record_file’, its syntax may need to be modified to use singly-

qouted literals.

6.1.1 Proposed syntax

The record type is a POD type that is passed as an explicit type parameter to the keyword. The keyword

is supposed to be function-like with the following pseudo signature:
template <typename record_type = char, size_t M >
constexpr record_type (record_file (char (&filepath) [{M}])) [{N}];

Where ‘N’ is the size of file in terms of record type. The keyword accepts a filepath of arbitrary length,

resolve it according to project config, and converts it to a constexpr array of ‘record_type’s. Types other

than ‘char‘ family of types shall be considered none-portable (due to endian-ness and platform specific

issues). Example:
//add a wallpaper to the executable (kept as signed char[{X}]):
auto constexpr picture = record_file <signed char> ('.\resource\photo.jpg');
//embed a welcome sound track in the executable (kept as char[{X}]):
char constexpr voice[{}] = record_file ('.\resource\track.mp3’);

6.2 SINGLE-QUOTED “ OPERATOR'’ ”

Although in presence of constexpr character array literals, user defined literals for other types can be

implemented as constexpr converters, syntax suger might seem appealing.

This operator can be the constexpr counterpart of ‘operarator”” ’ for string literal definition. To emphasize

the constexpr nature of this operator, the value is fed in broken braces. One typical specialization of the

operator may look like:

 constexpr auto operarator ‘’< char value_string[{N}], suffix_string > () {…};

example (literal for std::bitset<8>):

 constexpr std::bitset<8> operarator ‘’< char value [{8}], 'b8’ > () {

 static_assert(! all_1_0 (value), 'bad bitset<8> literal’);

 return to_b8(value);

 };
 std::bitset<8> bits= 10101010b8;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0373r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0373r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0373r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0373r0.pdf

Farideddin Mehrabi

 FULL-FEATURED VALUE-SEMANTIC ARRAYS

Page 8 of 8

7. THE HORIZON

Existence of constexpr array and string types as candidates for containing compile-time

metadata, might have a positive impact on future proposals regarding meta-data, reflection

or typeinfo on the long run. I cannot reference th large amount of proposals for reflection

which are waiting on some form of constexpr array/string. Adoption of P0442 may lubricate

the wheels for all those efforts in addition to string proposals addressed earlier.

	Abstract
	References
	P0259 :
	N4236:
	N4121:
	P0373:
	P0341:
	1. The Age-Old Wound
	1.1 Decaying VS Type-Erasure
	1.1.1 ‘Character Array’ and ‘Character String’
	1.1.1.1 The Scar: String literals
	1.1.1.1.1 C++ style character array literal

	1.1.2 Array Literal(Initializer)
	1.1.2.1 Latest Surgery: ‘std::initializer_list’

	1.2 consexpr array/string
	1.3 By-Reference Semantics

	2. Proposed Semantics
	3. Proposed Syntax
	3.1 Array object instance declaration
	3.2 ‘C++-style’ array constexpr initializer
	3.2.1 Named array initialization syntax:
	3.2.1.1 Array initialization syntax with implicit dimension

	3.2.2 Unnamed array initialization syntax
	3.2.2.1 explicit-type array initializer:
	3.2.2.2 Implicit-type array initializer:

	3.3 Character array initializer

	4. Challenges
	4.1 initializer_list

	5. Effects on STD Library
	6. Subsidiary Proposals
	6.1 Keyword ‘record_file’
	6.1.1 Proposed syntax

	6.2 Single-quoted “ operator'’ ”

	7. The horizon

