
DEEEER0 draft 3: SG14 [[move_relocates]]

Document #: DEEEER0 draft 3
Date: 2018-04-16
Project: Programming Language C++

Evolution Working Group
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

This proposes a new C++ attribute [[move_relocates]] which enables more aggressive optimisa-
tion of moves of those types than is possible at present.

A major motivation behind this proposal is to enable the standard lightweight throwable error

object as proposed by [P0709] Zero-overhead deterministic exceptions to directly encapsulate a
std::exception_ptr, using CPU registers alone for storage.

Changes since draft 2:
• Replaced the compiler deducements with a simple C++ attribute named
[[move_relocates]] and reduced down the size and complexity of paper consider-
ably to the bare essentials.

Changes since draft 1:
• Added requirement for default constructor, move constructor and destructor to be

defined in-class.
• Added halting problem avoidance requirements.
• Refactored text to clearly indicate that trivial relocatability is just an optimisation of

move.
• Mentioned STL allocators and effects thereupon.

Contents

1 Introduction 2
1.1 Prior work in this area . 3

2 Impact on the Standard 3

3 Proposed Design 3

4 Design decisions, guidelines and rationale 6

5 Technical specifications 6

6 Frequently asked questions 6

7 Acknowledgements 6

1

mailto:s_sourceforge@nedprod.com

8 References 7

1 Introduction

The most aggressive optimisations which the C++ compiler can perform are to types which meet
the TriviallyCopyable requirements:

• Every copy constructor is trivial or deleted.

• Every move constructor is trivial or deleted.

• Every copy assignment operator is trivial or deleted.

• Every move assignment operator is trivial or deleted.

• At least one copy constructor, move constructor, copy assignment operator, or move assign-
ment operator is non-deleted.

• Trivial non-deleted destructor.

All the integral types meet TriviallyCopyable, as do C structures. The compiler is thus free to
store such types in CPU registers, relocate them in memory as if by memcpy, and overwrite their
storage as no destruction is needed. This greatly simplifies the job of the compiler optimiser, making
for tighter codegen, faster compile times, and less stack usage, all highly desirable things.

There are quite a lot of types in the standard library and in user code which do not meet TriviallyCopyable,
yet are completely safe to be stored in CPU registers and can be relocated arbitrarily in memory
as if by memcpy. For example, std::vector<T> likely has a similar implementation to:

1 template<class T> class vector
2 {
3 T *_begin{nullptr}, *_end{nullptr};
4 public:
5 vector() = default;
6 vector(vector &&o) : _begin(o._begin), _end(o._end) { o._begin = o._end = nullptr; }
7 ~vector() { delete _begin; _begin = _end = nullptr; }
8 ...
9 };

Such a vector implementation could be absolutely stored in CPU registers, and arbitrarily relocated
in memory with no ill effect via the following as-if sequence:

1 vector<T> *dest, *src;
2

3 // Copy bytes of src to dest
4 memcpy(dest, src, sizeof(vector<T>));
5

6 // Copy bytes of default constructed instance to src
7 vector<T> default_constructed;
8 memcpy(src, &default_constructed, sizeof(vector<T>));

2

This paper proposes a new C++ attribute [[move_relocates]] which tells the compiler and library
code when the move of a type with non-trivial move constructor and non-trivial destructor can be
instead performed using two as-if memcpy()’s.

1.1 Prior work in this area

• [N4034] Destructive Move

This proposal differs from destructive moves in the following ways:

– It is considerably simpler than N4034, we do not propose any new kind of operation,
nor new semantics. We merely propose an alternative way of doing moves, valid under
limited circumstances.

• [P0023] Relocator: Efficiently moving objects.

This proposal differs from relocators in the following ways:

– It is considerably simpler than P0023, we do not propose any new kind of operation,
nor new operators. We merely propose an alternative way of doing moves, valid under
limited circumstances.

2 Impact on the Standard

Very limited. This is a limited optimisation of the implementation of move construction, and the
STL move construct-destruct cycle only. We do not fiddle with allocators, the meaning nor semantics
of moves, nor anything else.

All we propose is that where it is safe to do so, we replace the calling of the move constructor with
memcpy() (which can be elided by the compiler if it has no visible side effects, same as with all
memcpy()). That in turn enables temporary storage in CPU registers, if the compiler chooses to do
so.

3 Proposed Design

1. That a new C++ attribute [[move_relocates]] become applicable to type definitions.

2. This attribute shall be silently ignored if the type does not have a public, non-deleted, const-
expr, in-class defined default constructor and if there is not a public, non-deleted, non-virtual
move constructor.

3. If a type T has attribute [[move_relocates]], instead of calling the defined move construc-
tor, the compiler will implement move construction as-if by memcpy(dest, src, sizeof(T)),
followed by as-if memcpy(src, &T{}, sizeof(T)). Note that by ‘as-if’, we mean that the
compiler can fully optimise the sequence, including the elision of calling the destructor if the

3

destructor would do nothing when supplied with a default constructed instance, which in turn
would elide entirely the second memory copy.

4. It is considered good practice that the move constructor be defaulted with an explanatory
comment mentioning the [[move_relocates]], as the move constructor is never called on
types with non ignored [[move_relocates]]. For backwards compatibility with older com-
pilers, it is acceptable to implement the move constructor to cause the exact same effects as
[[move_relocates]] i.e. copying the bits of source to destination followed by copying the
bits of a default constructed instance to source.

5. If a type T has attribute [[move_relocates]], the trait std::is_relocatable<T> shall be
defaulted to true. Note that the programmer may specialise std::is_relocatable<T> to any
value they like for some type T.

6. If STL containers see that for their type T that std::is_relocatable<T> is true, that
std::has_virtual_destructor<T> is false, and if the Allocator they are configured with has
a defaulted construct() and destroy(), they will relocate the storage for type T in the move
construction + destruction cycle by a method equivalent to copying bits, but without calling
the move constructor, nor the destructor on the moved-from storage.

This introduces an important corner case: the programmer is free to write a non-virtual
destructor for a [[move_relocates]] type which when called on a default constructed instance
is non-trivial, however it will not be called when the type is used inside a STL container with
the default Allocator.

7. [[move_relocates]] types with a non-virtual destructor are eligible for being automatically
treated as having a trivial ABI1 i.e. can be passed between function in CPU registers if the
compiler can easily deduce2 that the destructor, when called on a default constructed instance,
would become trivial.

Let us take a worked example. Imagine the following partial implementation of unique_ptr:

1 template<class T>
2 class [[move_relocates]] unique_ptr
3 {
4 T *_v{nullptr};
5 public:
6 // Has public, non-deleted, constexpr default constructor
7 unique_ptr() = default;
8

9 constexpr explicit unique_ptr(T *v) : _v(v) {}
10

11 unique_ptr(const unique_ptr &) = delete;
12 unique_ptr &operator=(const unique_ptr &) = delete;
13

14 #if __cplusplus >= 202300
15 // Has a public, non-deleted, move constructor
16 unique_ptr(unique_ptr &&) = default; // implemented via [[move_relocates]]
17 #else

1https://clang.llvm.org/docs/AttributeReference.html#trivial-abi-clang-trivial-abi
2‘Easily deduce’ is actually quite hard to implement. A compiler might simply insist on there also being a

[[trivial_abi]] attribute on the type, if it supported such an attribute.

4

https://clang.llvm.org/docs/AttributeReference.html#trivial-abi-clang-trivial-abi

18 constexpr unique_ptr(unique_ptr &&o) noexcept : _v(o._v)
19 {
20 o._v = nullptr;
21 }
22 #endif
23 unique_ptr &operator=(unique_ptr &&o) noexcept
24 {
25 delete _v;
26 _v = o._v;
27 o._v = nullptr;
28 return *this;
29 }
30 ~unique_ptr()
31 {
32 delete _v;
33 _v = nullptr;
34 }
35 };

The default constructor is not deleted, constexpr and public and it sets the single member data
_v to nullptr. Additionally, the move constructor is not deleted, not virtual and public, so
[[move_relocates]] is not ignored.

The destructor, when called on a default constructed instance, is trivial (operator delete does
nothing when fed a null pointer, and setting a null pointer to a null pointer leaves the object with
exactly the same memory representation as a default constructed instance).

We thus get, for this program:

1 unique_ptr<int> __attribute__((noinline)) foo()
2 {
3 return unique_ptr<int>(new int);
4 }
5

6 int main()
7 {
8 auto a = foo();
9 return 0;

10 }

... that current C++ compilers will generate the following x64 assembler:
1 foo(): # @foo()
2 push rbx
3 mov rbx, rdi
4 mov edi, 4
5 call operator new(unsigned long)
6 mov qword ptr [rbx], rax
7 mov rax, rbx
8 pop rbx
9 ret

10 main: # @main
11 push rax
12 mov rdi, rsp
13 call foo()

5

14 mov rdi, qword ptr [rsp]
15 test rdi, rdi
16 je .LBB2_2
17 call operator delete(void*)
18 .LBB2_2:
19 xor eax, eax
20 pop rcx
21 ret

But under this proposal, the following x64 assembler would be generated instead:
1 foo(): # @foo()
2 mov edi, 4
3 jmp operator new(unsigned long) # TAILCALL
4 main: # @main
5 push rax
6 call foo()
7 test rax, rax
8 je .LBB2_2
9 call operator delete(void*)

10 xor eax, eax
11 .LBB2_2:
12 pop rcx
13 ret

Due to moves being known by the compiler to relocate as-if by memcpy(), the optimiser has spotted
that unique_ptr can be elided entirely, and just the newed pointer it contains is passed directly
between functions, by CPU register.

4 Design decisions, guidelines and rationale

Previous work in this area has tended towards the complex. This proposal proposes the bare
essentials for address relocatable types in the hope that the committee will be able to get this
passed.

5 Technical specifications

No Technical Specifications are involved in this proposal.

6 Frequently asked questions

7 Acknowledgements

Thanks to Richard Smith for his extensive thoughts on the feasibility, and best formulation, of this
proposal.

6

Thanks to Arthur O’Dwyer for his feedback from his alternative relocatable proposal.

8 References

[N4034] Pablo Halpern,
Destructive Move
https://wg21.link/N4034

[P0023] Denis Bider,
Relocator: Efficiently moving objects
https://wg21.link/P0023

[P0709] Herb Sutter,
Zero-overhead deterministic exceptions
https://wg21.link/P0709

[P0784] Dionne, Smith, Ranns and Vandevoorde,
Standard containers and constexpr
https://wg21.link/P0784

7

https://wg21.link/N4034
https://wg21.link/P0023
https://wg21.link/P0709
https://wg21.link/P0784

	Introduction
	Prior work in this area

	Impact on the Standard
	Proposed Design
	Design decisions, guidelines and rationale
	Technical specifications
	Frequently asked questions
	Acknowledgements
	References

