
Concepts Lite: Constraining Templates with
Predicates

Andrew Sutton, Bjarne Stroustrup

Texas A&M University
Department of Computer Science and Engineering

College Station, Texas 77843

1 Introduction
In this paper, we introduce template constraints (a.k.a., “concepts lite”), an
extension of C++ that allows the use of predicates to constrain template argu-
ments. The proposed feature is minimal, principled, and uncomplicated. Tem-
plate constraints are applied to enforce the correctness of template use, not the
correctness of template definitions. The design of these features is intended to
support easy and incremental adoption by users. More precisely, constraints:

• allow programmers to directly state the requirements of a set of template
arguments as part of a template’s interface,

• support function overloading and class template specialization based on
constraints,

• fundamentally improve diagnostics by checking template arguments in
terms of stated intent at the point of use, and

• do all of this without any runtime overhead or longer compilation times.

This work is implemented as a branch of GCC-4.8 and is available for down-
load at http://concepts.axiomatics.org/˜ans/. The implementation includes a
compiler and a modified standard library that includes constraints. Note that,
as of the time of writing, all major features described in this report have been
implemented.

This paper is organized like this:

• Tutorial: introduces the basic notions of constraints, shows examples of
their use, and gives examples of how to define constraints.

• Discussion: explains what constrains are not. In particular, we try to
outline constraints’s relation to concepts and to dispel some common mis-
conceptions about concepts.

1

http://concepts.axiomatics.org/~ans/

• User’s guide: provides many more tutorial examples and demonstrate the
completeness of the constraints mechanism.

• Implementation: gives an overview of our GCC compiler support for con-
straints.

• Extensions: we discuss how constraints might be extended to interact with
other proposed features.

• Language definition: presents a semi-formal definition of constraints

2

2 Constraints Tutorial
This section is a tutorial of the template constraints language feature. We
present the basic concepts of the feature and describe how to constrain tem-
plates, and show what constraint definitions are.

2.1 Introducing Constraints
A template constraint is part of a template parameter declaration. For example,
a generic sort algorithm might be declared as:

template<Sortable Cont>
void sort(Cont& container);

Here, Sortable is a constraint that is written as the “type” of the template
parameter Cont. The constraint determines what kinds of types can be used with
the sort algorithm. Hete, Sortable specifies that any type template argument
for sortmust be “sortable,” that is, be a randon-access container with an element
type with a <. Alternatively, we can introduce constraints using a requires
clause, in which constraints are explicitly called:

template<typename Cont>
requires Sortable<Cont>()

void sort(Cont& cont)

These two declarations of sort are equivalent. The first declaration is a
shorthand for the second. We generally prefer the shorthand since it is often
more concise and resembles the conventional type notation.

The requires clause is followed by a Boolean expression that evaluates pred-
icates. There is no magic to the definition of Sortable: it is just a constexpr
function returning true when its type argument is a permutable random access
container with a totally ordered element type. The predicate is evaluated at
compile time and constrains the use of the template.

Trying to use the algorithm with a list does not work since std::sort is not
directly implemented for bidirectional iterators in the standard library.

list<int> lst = ...;
sort(lst); // Error

In C++11, we might expect a fairly long error message. It depends how
deeply in the sequence of nested function calls the sort algorithm tries to do
something that a bidirectional iterator does not support, like adding n to an
iterator. The error messages tend to be somewhat cryptic: “no ‘operator[]’
available”. With constraints, we can get much better diagnostics. Then pro-
gram above results in the following error.

error: no matching function for call to ‘sort(list<int>&)’
sort(l);

^
note: candidate is:
note: template<Sortable T> void sort(T)

3

void sort(T t) { }
^

note: template constraints not satisfied because
note: ‘T’ is not a/an ‘Sortable’ type [with T = list<int>] since
note: ‘declval<T>()[n]’ is not valid syntax

Please note that this is real computer output, rather than a mere conjecture
about what we might be able to produce. If people find this too verbose, we
plan to provide a compiler option to suppress the “notes”.

Constraints violations are diagnosed at the point of use, just like type errors.
C++98 (and C++11) template instantiation errors are reported in terms of
implementation details (at instantiation time), whereas constraints errors are
expressed in terms of the programmer’s intent stated as requirements. This is
a fundamental difference. The diagnostics explain which constraints were not
satisfied and the specific reasons for those failures.

The programmer is not required to explicitly state whether a type satisfies a
template’s constraints. That fact is computed by the compiler. This means that
C++11 applications written against well-designed generic libraries will continue
to work, even when those libraries begin using constraints. For example, we have
put constraints on almost all STL algoritms without having to modify user code.

For programs that do compile, template constraints add no runtime over-
head. The satisfaction of constraints is determined at compile time, and the
compiler inserts no additional runtime checks or indirect function calls. Your
programs will not run more slowly if you use constraints.

Constraints can be used with any template. We can constrain and use class
templates, alias templates, and class template member function in the same way
as function templates. For example, the vector template can be declared using
shorthand or, equivalently, with a requires clause.

// Shorthand constraints
template<Object T, Allocator A>
class vector;

// Explicit constraints
template<typename T, typename A>

requires Object<T>() && Allocator<A>()
class vector;

When we have constraints on multiple parameters, they are combined in
the requires clause as a conjunction. Using vector is no different than before,
except that we get better diagnostics when we use it incorrectly.

vector<int> v1; // Ok
vector<int&> v2; // Error: ‘int&’ does not satisfy the constraint ‘Object’

Constraints can also be used with member functions. For example, we only
want to compare vectors for equality and ordering when the value type can be
compared for equality or ordering.

template<Object T, Allocator A>

4

class vector
{

requires Equality_comparable<T>()
bool operator==(const vector& x) const;

requires Totally_ordered<T>()
bool operator<(const vector& x) const;

};

The requires clause before the member declaration introduces a constraint
on its usage. Trying to compare two vectors of a type that are not equality
comparable or totally ordered results an an error at the point of use, not from
inside std::equal or std::lexicographical_compare, which is what happens in
C++98 and C++11.

2.1.1 Multi-type Constraints

Constraints on multiple types are essential and easily expressed. Suppose we
want a find algorithm that searches through a sequence for an element that
compares equal to value (using ==). The corresponding declaration is:

template<Sequence S, Equality_comparable<Value_Type<S>> T>
Iterator_type<S> find(S&& sequence, const T& value);

Sequence is a constraint on the template parameter S. Likewise, Equality_-
comparable<Value_type<S>> is a constraint on the template parameter T. This
constraint depends on (and refers to) the previously declared template param-
eter, S. It’s meaning is that the parameter T must be equality comparable with
the value type of S. We could alternatively and equivalently express this same
requirement with a requires clause.

template<typename S, typename T>>
requires Sequence<S>() && Equality_comparable<T, Value_type<S>>()

Iterator_type<S> find(S&& sequence, const T& value);

Why have two alternative notations? Some complicated constraints are best
expressed by a combination of the shorthand notation and requires expressions.
For example:

template<Sequence S, typename T>
requires Equality_comparable<T, Value_type<S>>()

Iterator_type<S> find(S&& sequence, const T& value);

The choice of style is up to the user. We tend prefer the concise shorthand. In
“Concept Design for the STL” (N3351=12-0041) we showed that the shorthand
notation is sufficiently expressive to handle most of the STL [1].

2.1.2 Overloading

Overloading is fundamental in generic programming. Generic programming re-
quires semantically equivalent operations on different types to have the same

5

name. In C++11, we have to simulate overloading using conditions (e.g., with
enable_if), which results in complicated and brittle code that slows compila-
tions.

With constraints, we get overloading for free. Suppose that we want to add
a find that is optimized for associative containers. We only need to add this
single declaration:

template<Associative_container C>
Iterator_type<C> find(C&& assoc, const Key_type<C>& key)
{

return assoc.find(key);
}

The Associative_container constraint matches all associative containers:
set, map, multimap, ... basically any container with an associated Key_type and
an efficient find operation. With this definition, we can generically call find for
any container in the STL and be assured that the implementation we get will
be optimal.

vector<int> v { ... };
multiset<int> s { ... };

auto vi = find(v, 7); // calls sequence overload
auto si = find(s, 7); // calls associative container overload

At each call site, the compiler checks the requirements of each overload to
determine which should be called. In the first call to find, v is a Sequence
whose value type can be compared for equality with 7. However, it is not an
associative container, so the first overload is called. At the second call site s is
not a Sequence; it is an Associative_container with int as the key type, so the
second overload is called.

Again, the programmer does not need to supply any additional information
for the compiler to distinguish these overloads. Overloads are automatically dis-
tinguished by their constraints and whether or not they are satisfied. Basically,
the resolution algoritm picks the unique best overload if one exists, otherwise a
call is an error. For details, see Section ??.

In this example, the requirements are largely disjoint. It is unlikely that
we will find many containers that are both Sequences and Associations. For
example, a container theat was both a Sequence and an Association would
have to have both a c.insert(p,i,j) and a c.equal_range(x). However, it is
often the case that requirements on different overloads overlap, as with iterator
requirements. To show how to handle overlapping requirements, we look at a
constrained version of the STL’s advance algorithm in all its glory.

template<Input_iterator I>
void advance(I& i, Difference_type<I> n)
{

while (n--) ++i;
}

6

template<Bidirectional_iterator I>
void advance(I& i, Difference_type<I> n)
{

if (n > 0) while (n--) ++i;
if (n < 0) while (n++) --i;

}

template<Random_access_iterator I>
void advance(I& i, Difference_type<I> n)
{

i += n;
}

The definition is simple and obvious. Each overload of advance has progres-
sively more restrictive constraints: Input_iterator being the most general and
Random_accesss_iterator being the most constrained. Neither type traits nor
tag dispatch is required for these definitions or for overload resolution.

Calling advance works as expected. For example:

list<int>::iterator i = ...;
advance(i, 2); // Calls 2nd overload

As before, some overloads are rejected at the call site. For example, the
random access overload is rejected because a list iterator does not satisfy those
requirements. Among the remaining requirements the compiler must choose the
most specialized overload. This is the second overload because the requirements
for bidirectional iterators include those of input iterators; it is therefore a better
choice. We outline how the compiler determines the most specialized constraint
in 4.3 and more formally in ??.

Note that we did not have to add any code to resolve the call of advance.
Instead, we computed the correct resolution from the constraints provided by
the programmer(s).

A conventional (unconstrained C++98) template parameter act as of “catch-
all” in overloading. It is simply represents the least constrained type, rather than
being a special case . For example, a print facility may have:

template<typename T>
void print(const T& x);

template<Container C>
void print(const C& container);

// ...
vector<string> v { ... };
print(v); // Calls the 2nd overload

complex<double> c {1, 1};
print(c); // Calls the 1st overload.

An unconstrained template is obviously less constrained than a constrained
template and is only selected when no other candidates are viable. This implies

7

that older templates can co-exist with constrained templates and that a gradual
transition to constrained templates is simple.

Note that we do not need a “late check” notion or a separete language con-
structs for constrained and unconstrained template arguments. The integration
is smooth.

2.2 Defining Constraints
We now look at the definition of constraints. What do they look like? Here is
a declaration of Equality_comparable.

template<typename T>
constexpr bool Equality_comparable();

A constraint is simply an unconstrained constexpr function template that
takes no function arguments and returns bool. It is—in the most literal sense—
a predicate on template arguments. This also means that the evaluation of
constraints in a requires clause is the same as constexpr evaluation.

The Equality_comparable constraint might be defined like this:

template<typename T>
constexpr bool Equality_comparable()
{

return has_eq<T>::value && Convertible<eq_result<T>, bool>()
&& has_neq<T>::value && Convertible<neq_result<T>, bool>();

}

The body of the constraint is a conjunction of type traits and calls to other
constraints. Constraints build directly on type traits, they do not replace them.
For example, Convertible has this definition:

template<typename T typename U>
constexpr bool Convertible()
{

return is_convertible<T, U>::value;
}

The template constraint features do not aim to define a trait definition lan-
guage. Our primary interest with this proposal is improving the declaration and
use of generic algorithms and data structures. Because traits can be reasonably
implemented in C++11, we have not proposed any new language features that
will simplify their writing. However, some support can be provided in the form
of compiler intrinsics. These compiler features help reduce the burden of im-
plementing constraints, speed up compilation (compared to C++11 code using
enable_if), and help avoid some of the substitution failure problems typically
associated with low-level type trait implementation. We discuss these issues at
length in Section 5.1.

There is no concept keyword. For this simpleconstraints system costexpr
suffices. However, for proper integrations with generic lambdas, for better mes-
sages from static_assert and for the eventual inclusion of semantic properties

8

in a full-blown concepts design, some constexpr functions need to be labelled
concept; see Section 6.2;

9

3 Constraints and Concepts
Template constraints (concepts-lite) provide a mechanism form constraining
template arguments and overloading functions based on constraints. Our long-
term goal is a complete definition of concepts, which we see as a full-featured
version of constraints. With this work, we aim to take that first step. Con-
straints are a dramatic improvement on enable_if, but they are definitely not
complete concepts.

First, constraints are not a replacement for type traits. That is, libraries
written using type traits will interoperate seamlessly with libraries written us-
ing constraints. In fact, the motivation for constraints is taken directly from
existing practice—the use of enable_if and type traits to emulate constraints
on templates. Many constraints in our implementation are written directly in
terms of existing type traits (e.g., std::is_integral).

Second, constraints do not provide a concept or constraint definition lan-
guage. We have not proposed any language features that simplify the definition
of constraints. We hold this as future work as we move towards a complete
definition of concepts. Any new language features supporting constraint defi-
nition would most likely be obviated by concepts in the future. That said, our
implementation does provide some compiler intrinsics that support the imple-
mentation of constraints and would ease the implementation of concepts. This
feature is detailed in Section 5.

Third, constraints are not concept maps. Predicates on template arguments
are automatically computed and do not require any additional user annota-
tions to work. A programmer does not need to create a specialization of
Equality_comparable in order for that constraint to be satisfied. Also unlike
C++0x concepts, constraints do not change the lookup rules inside concepts.

Finally, constraints do not constrain template definitions. That is, the mod-
ular type checking of template definitions is not supported by template con-
straints. We expect this feature to be a part of a final design for concepts.

The features proposed for constraints are designed to facilitate a smooth
transition to a more complete concepts proposal. The mechanism used to eval-
uate and compare constraints readily apply to concepts as well, and the language
featurese used to describe requirements (type traits and compiler intrinsics) can
be used to support various models of separate checking for template definitions.

The constraints proposal does not directly address the specification or use
of semantics; it is targetted only at checking syntax. The constraint language
described in this papers has been designed so that semantic constraints can be
readily integrated in the future.

However, we do note that virtually every constraint that we find to be useful
has associated semantics (how could it not?). Semantics should be documented
along with constraints in the form of e.g., comments or other external definitions.
For example, we might document Equality_comparable as:

template<typename T>
constexpr bool Equality_comparable()
{

10

... // Required syntax
}
// Semantics:
// For two values a and b, == is an equivalence relation that
// returns true when a and b represent the same entity.
//
// The != operator is equivalent to !(a == b).

Failing to document the semantics of a constraint leaves its intent open to
different interpretations. Work on semantics is ongoing and, for the time being,
separate from constraints. We hope to present on the integration of these efforts
in the future. We see no problems including semantic information in a form
similar to what was presented in N3351 [1].

11

4 User’s Guide
This section expands on the tutorial and gives more examples of how constraints
interact with various language features. In particular, we look more closely at
constraints, discuss overloading concerns, examine constraints on member func-
tions, partial class template specializations. This section also describes con-
straints on non-type arguments and the interaction of constraints with variadic
templates. We begin with a thorough explanation of constraints.

A constraint is simply a C++11 constant expression whose result type can
be converted to 0. For example, all of the following are valid constraints.

Equality_comparable<T>()
!is_void<T>::value
is_lvalue_reference<T>::value && is_const<T>::value
is_integral<T>::value || is_floating_point<T>::value
N == 2
X < 8

A constraint is satisfied when the expression evaluates, at compile-time to true.
This is effectively everything that a typical user (or even an advanced user)
needs to know about constraints.

However, in order to solve problems related to redeclaration and overloading,
and to improve diagnostics, the compiler must reason about the content of these
constraints.

4.1 Anatomy of a Constraint
The following section describes the compiler’s view of a constraint and is pri-
marily intended as an introduction to the semantics of the proposed features.

In formal terms, constraints are written in a constraint language over a set
of atomic propositions and using the logical connectives and (&&) and or (||).
For those interested in the logical aspects of the language, it is a subset of
propositional calculus.

In order to reason about the equivalence and ordering of constraints the com-
piler must decompose a constraint expression into sets of atomic propositions.

An atomic proposition is a C++ constant expression that evaluates to either
true or false. These terms are called atomic because the compiler can only
evaluate them. They are not further analyzed or decomposed. These include
things like type traits (is_integral<T>::value), relational expressions (N == 0),
and some constexpr functions are also atomic (e.g., is_prime(N)).

The reason that expressions like is_integral<T>::value and is_prime(N) are
atomic is that there they may be multiple definitions or overloads when instan-
tiated. is_integral could have a number of specializations, and is_prime could
have different overloads for different types of N. Specializations or overloads
could also be defined after the first use in a constraint. Trying to decompose
these declarations would be unsound. However, they can still be used and
evaluated as constraints. Some functions are given special meaning, which we
describe in the next section.

12

Negation (e.g., !is_void<T>::value) is also an atomic proposition. These
expressions can be evaluated but are not decomposed. While negation has
turned out to be fairly common in our constraints (see Section 5.3), we have
not found it necessary to assign deeper semantics to the operator.

Atomic propositions can be also be nested and include arithmetic opera-
tors, calls to constexpr functions, conditional expressions, literals, and even
compound expressions. For example, (3 + 4 == 8, 3 < 4) is a perfectly valid
constraint, and its result will always be true.

4.1.1 Constraint Predicates

While some function calls in constraints are atomic propositions, calls to simple
functions like Equality_comparable and Convertible are decomposed into their
constituent parts. We call these kinds functions are constraint predicates. A
function is constraint predicate only if it satisfies these requirements.

• A function template

• Has no function parameters (is nullary)

• Returns bool

• Is constexpr

Recall that the definitions of Equality_comparable and Convertible from
Section 2.

template<typename T> constexpr bool
Equality_comparable()
{

return has_eq<T>::value && Convertible<eq_result<T>, bool>()
&& has_neq<T>::value && Convertible<neq_result<T>, bool>();

}

template<typename T, typename U>
constexpr bool Convertible()
{

return is_convertible<T, U>::value;
}

Both are constraint predicates. Inside a requires clause, a call to a con-
straint predicate is called a constraint check. Check expressions are recursively
expanded, inlining the definition of the predicate into the expression. For ex-
ample, suppose we have this:

template<Equality_comparable T>
bool distinct(T a, T b) { return a != b; }

The shorthand Equality_comparable requirement is first transformed into a
constraint expression: Equality_comparable<T>(). Because Equality_comparable
is a constraint predicate, it is recursively expanded (as is the nested check of

13

Convertible). Ultimately, the previous declaration is equivalent to having writ-
ten:

template<typename T>
requires has_eq<T>::value

&& is_convertible<eq_result<T>, bool>::value
&& has_neq<T>::value
&& is_convertible<neq_result<T>, bool>::value;

bool distinct(T a, T b)

We prefer the more concise expression of requirements. Constraint pred-
icates are the basic building block of conceptual abstractions. Concepts like
Input_iterator, Range, and Relation are defined through the composition of
constraint predicates.

Recursively breaking constraint predicates into their constituent parts allows
us much better analysis, more flexibility, and greatly simplifies the definition of
overloading and ambiguity.

4.1.2 Connectives

Once we have broken predicates up into atomic proporsitions, we can use straight-
forward classical logic and logical algorithms. Constraints are composed of
propositions joined by the logical connectives && (conjunction, and) and ||
(disjunction, or). These have the usual meanings, but cannot be overloaded.
Parentheses can also be used for grouping.

In order to solve problems related to redeclaration and overload resolution,
the compiler must decompose constraints into sets of atomic propositions based
on the connectives in the constraint expression.

Conjunction (and) results in the union of requirements into a single set.
For example, the distinct function in the previous has a set comprised of four
requirements:

has_eq<T>::value
is_convertible<eq_result<T>, bool>::value
has_neq<T>::value
is_convertible<neq_result<T>, bool>::value

Constraints in the sets can be differentiated syntactically. That is, if two
expressions have the same syntax, then only one needs to be retained in the set.

Disjunction (or) results in the creation of alternatives. Suppose we have con-
straints describing the distinct requirements for Containers and Ranges, where a
container has value semantics and ranges have reference semantics.

template<typename T>
constexpr bool Container()
{

return value_semantic<T>::value
&& Equality_comparable<T>()
&& has_begin<T>::value
&& has_end<T>::value

14

&& has_size<T>::value; // Probably more..
}

template<typename T>
constexpr bool Range()
{

return reference_semantic<T>::value
&& Equality_comparable<T>()
&& has_begin::value
&& has_end::value;

}

The value_semantic and reference_semantic type traits are hypothetical,
but could possibly be implementing using traits classes or associated types or
values. The remaining traits are similar to the has_eq and has_neq traits used
earlier. The two concepts have some syntax in common, but are otherwise
disjoint. It should not be possible to define a type that implements both value
and reference semantics.

Nearly every algorithm in the STL can be extended to require a disjunction
of these requirements. For example:

template<typename T>
requires Container<T>() || Range<T>()

auto find(const T& x) -> decltype(begin(x))
{

return find(begin(x), end(x));
}

The algorithm is written in the shared syntax of the different constraints.
Either constraint may be satisfied, but it would be incorrect (for example) to
call size(x) since it is not required by both constraints.

The decomposition of these requirements creates alternative sets of require-
ments. They are:

// Alternative 1 (Container<T>)
value_semantics<T>::value
has_eq<T>::value
is_convertible<eq_result<T>, bool>::value
has_neq<T>::value
is_convertible<neq_result<T>, bool>::value
has_begin<T>::value
has_end<T>::value
has_size<t>::value

// Alternative 2 (Range<T>)
reference_semantics<T>::value
has_eq<T>::value
is_convertible<eq_result<T>, bool>::value
has_neq<T>::value
is_convertible<neq_result<T>, bool>::value
has_begin<T>::value

15

has_end<T>::value

Finally, we note that the decomposition of constraints can be used to im-
prove diagnostics. The error messages shown in Section 2 are derived from the
decomposed requirements of the Sortable constraint. Specific messages can be
crafted for specific kinds of requirements, especially those written using intrinsic
functions.

4.1.3 Relations on Constraints

In order to support redeclaration, overloading, and partial specialization, con-
straints must be compared for equivalence and ordering. This is done by com-
paring sets of propositions. Note that propositions are compared syntactically.

Two constraints are equivalent when the contain the same propositions. Be-
cause equivalence is based on the decomposed sets of propositions, two requires
clauses may have different spellings, but may require the same things.

Constraints are partially ordered by the subsumes relation. Specifically,
one constraint subsumes another when its requirements include those of the
other. The subsumes relation is actually a generalization of the subset relation
on sets that can accommodate alternatives. When neither constraint contains
alternatives, the relations are the equivalent.

For example, we define Totally_ordered like this:

template<typename T>
constexpr bool Totally_ordered()
{

return Weakly_ordered<T>() && Equality_comparable<T>();
}

The relationship between the requirements of Totally_ordered and Equality_comparable
can be pictured like this:

Totally_ordered

Equality_comparable

Totally_ordered subsumes Equality_comparable because its requirements in-
clude those of the latter. This relation holds for any constraint predicate that
explicitly includes another.

It is often the case the case that constraints overlap, with neither subsum-
ing the other. For example, this is true of the Container and Range concepts
described in the previous section. The relationship between those constraints
can be pictured this way:

16

Container Range

The subsumes relation is used to determine which of two templates is more
constrained. In particular, a template T is more specialized than another, U iff
they have the same generic type and the requirements of T subsume those of U .
This relation is used to different templates with the same type when computing
which is more specialized. Note that a constrained template is always more
specialized than an unconstrained template.

This concludes the logical foundation of the constraints language and its
associated relations. The remaining sections of this chapter describe how con-
straints interact with the C++ programming language.

4.2 Declarations, Redeclarations, and Overloading
Constraints are a part of a declaration, and that affects the rules for declarations,
definitions, and overloading.

First, any two declarations having the same name, equivalent types, and
equivalent constraints declare the same element. For example:

template<Floating_point T>
class complex; // #1

template<typename T>
requires Floating_pont<T>()

class complex; // #2

template<typename T>
requires is_same<T, float>::value

|| is_same<T, double>::value
|| is_same<T, long double>::value

class complex; // #3

The first two declarations introduce the same type, since the shorthand
constraint in #1 is equivalent to writing #2. If Floating_point is defined as a
disjunction of same-type constraints, then all three declarations would introduce
the same type since their sets of propositions are the same.

This holds for functions as well:

template<Totally_ordered T>
const T& min(const T&, const T&); // #1

template<Totally_ordered T>
const T& min(const T& a, const T& b) { ... } // #2

17

Here, #2 gives a definition for the function declaration in #1.
When two functions have the same name and type but different constraints,

they are overloads.

template<Input_iterator I>
ptrdiff_t distance(I first, I last); // #1

template<Random_access_iterator I>
ptrdiff_t distance(I first, I last); // #2

int* p = ...;
int* q = ...;
auto n = distance(p, q);

When distance is called, the compiler determines the best overload. The
process of overload resolution is described in 4.3 and an more specifically in ??.
In this case, this is determined by the most constrained declaration. Because
Random_access_iterator subsumes Input_iterator, the compiler will select #2.

Defining two functions with identical types and identical constraints is an
error.

Classes cannot be overloaded. For example:

template<Floating_point T>
class complex; // #1

template<Integral T>
class complex; // Error, redeclaration of #1 with different constraints

The reason this is not allowed is that C++ does not allow the arbitrary over-
loading of class templates. This language extension does not either. However,
constraints can be used in class template specializations.

template<Arithmetic T>
class complex;

template<Floating_point T>
class complex<T>; // #1

template<Integral T>
class complex; // #2

complex<int> g; // Selects #2

As with function overloads, the specializations are differentiated by the
equivalence of their constraints. Choosing among constrained specializations
is similar to the selection of constrained overloads: choose the most constrained
specialization.

Suppose Arithmetic has the following definition:

template<typename T>
constexpr bool Arithmetic()
{

18

return Integral<T>() || Floating_point<T>();
}

The reason that the compiler selects #2 is that a) int is not a floating
point type, and b) Integral subsumes the set of requirements denoted by
Integral<T>() || Floating_point<T>().

Note that there is no other relation between the constraints of partial special-
izations. It is not strictly required, for example, that the specializations match
or refine the constraints of the primary template. However, we have found that
it is generally a good idea to do so.

4.3 Overloading and Specialization
The overload resolution process is extended to support constraints. Briefly, for
some call expression, that process is (as usual):

1. Construct a set of candidate functions, instantiating templates if needed

2. Determine which of those candidates is viable

3. Select the best of the viable candidates.

Constructing the candidate set entails the instantiation of function tem-
plates. If the template is constrained, then those constraints must also be
checked. This is done immediately following template argument deduction.
Once all template arguments have been deduced, those arguments are substi-
tuted into the declaration’s constraints and evaluated as a constant expression.
If that substitution fails, or if the constraint evaluates to false, then that dec-
laration is not a viable candidate.

If instantiation succeeds and there are multiple candidates in the overload
set, the compiler must choose the most specialized. When the candidates are
both template specializations, having equivalent types, we compare the tem-
plates to see which is the most constrained.

Consider the following:

template<Container C>
void f(const C& c); // #1

template<typename S>
requires Container<S>() || Range<S>()

void f(const S& s); // #2

template<Equality_comparable T>
void f(const T& x); // #3

...
vector<int> v { ... };
f(v) // calls #1
f(filter(v, even)); // calls #2
f(0); // calls #3

19

The first call of f resolves to #1. All three overloads are viable, but #1 is
more constrained than both #2 and #3. Assuming filter returns a range
adaptor (as in boost::filter), the second call to f resolves to #2 because
a range adaptor is not a Container and Equality_comparable is subsumed by
Container<S>() || Range<S>(). The third call resolves to #3 since int is nei-
ther a Container nor a Range.

Selecting partial specializations is a similar process. As with overload resolu-
tion, determining which specialization is to be instantiated requires the compiler
to:

• Identify viable specializations

• Select the best viable specialization

When collecting candidates for instantiation, the compiler must determine
if the specialization is viable. This is done by deducing template arguments
and checking that specializations constraints. If template argument deduction
fails, the constraints cannot be instantiated, or if they evaluate to false, the
specialization is not viable.

If there are multiple viable specializations, the compiler must select the most
specialized template. When no other factors clearly distinguish two candidates,
we select the most constrained, exactly as we did during overload resolution.

For example, we can implement the is_signed trait using constraints.

template<typename T>
struct is_signed : false_type { };

template<Integral T>
struct is_signed : integral_constant<bool, (T(-1) < T(0))> { };

template<Floating_point T>
struct is_signed : true_type { };

Because constrained templates are more constrained than unconstrained
templates, the instantiation of this trait will always select the correct evalu-
ation for its argument. That is, the result is computed for integral types, and
trivially true for floating point types. For any other type, the result is, of course,
false.

4.4 Non-Type Constraints
Thus far, we have only constrained type arguments. However, predicates can
just as easily be used for non-type template arguments as well.

For example, in some generic data structures, it is often more efficient to
locally store objects whose size is not greater than some maximum value, and
to dynamically allocate larger objects.

template<size_t N, Small<N> T>
class small_object;

20

Here, Small<N> is just like any other type constraint except that it takes
an integer template argument, N. The equivalent declaration written using a
requires clause is:

template<size_t N, typename T>
requires Small<T, N>()

class small_object;

The constraint is true whenever the sizeof T is smaller than N. It could have
the following definition:

template<typename T, size_t N = sizeof(void*)>
constexpr bool Small()
{

return sizeof(T) <= N;
}

The parameter N defaults to sizeof(void*) . Default arguments can be
omitted when using shorthand. We might, for example, provide a facility for
allocating small objects:

template<Small T>
class small_object_allocator { ... };

Shorthand constraints can also introduce non-type parameters. Suppose we
define a hash_array data structure that has a fixed number of buckets. To reduce
the likelihood of collisions, the number of buckets should be prime. The Prime
constraint has the following declaration:

template<size_t N>
constexor bool Prime() { return is_prime(N); }

Note that the expression is_prime(N) does not denote a constraint check
since the is_prime function takes an argument (it may also be overloaded) so it
is an atomic proposition.

The hash table’s can declared like this:
template<Object T, Prime N>
class hash_array;

or equivalently:
template<typename T, size_t N>

requires Object<T>() && Prime<N>()
class hash_array;

Because constraints are constexpr functions, we can evaluate any property that
can be computed by constexpr evaluation, including testing for primality. Ob-
viously, constraints that are expensive to compute will increase compile time
and should be used sparingly.

Note that the kind of the template parameter N is size_t, not typename. A
shorthand constraint declares the same kind of parameter as the first template
parameter of the constraint predicate.

The proposed language does not currently support refinement based on in-
teger ranges. That is, suppose we have the two predicates:

21

template<int N>
constexpr bool Non_negative() { return N >= 0; }

template<int N>
constexpr bool Positive() { return N > 0; }

Both N >= 0 and N > 0 are atomic propositions. Neither constraint subsumes
the other, nor do they overlap.

4.5 Template Template Parameters
Template template parameters may both use constraints and be constrained.
For example, we could parameterize a stack over an object type and some
container-like template:

template<Object T, template<Object, Allocator>> class Cont>
class stack
{

Cont<T> container;
};

Any argument substituted for the Cont must have a conforming template
“signature” (same number and kinds of parameters) and also be at least as
constrained than that parameter. This is exactly the same comparison of con-
straints used to differentiate overloads and partial specializations. For example:

template<Object T, Allocator A>
class vector;

template<Regular T, Allocator A>
class my_list;

template<typename T, typename A>
class my_vector;

stack<int, vector> a; // OK: same constraints
stack<int, list> b; // OK: more constrained
stack<int, my_vector> c; // Error: less constrained.

The vector and list templates satisfy the requirements of stack Cont. How-
ever, my_vector is unconstrained, which is not more constrained than Object<T>()
&& Allocator<T>().

Template template parameters can also be introduced by shorthand con-
straints. For example, we can define a constraint predicate that defines a set of
templates that can be used in a policy-based designs.

template<template<typename> class T>
constexpr bool Checking_policy()
{

return is_checking_policy<T>::value;
}

22

Below are the equivalent declarations of a policy-based smart_ptr class using
a constrained template template parameter.

// Shorthand
template<typename T, Checking_policy Check>
class smart_pointer;

// Explicit
template<typename T, template<typename> class Check>

requires Checking_policy<Checking>()
class smart_pointer;

This restricts arguments for Check to only those unary templates for which
a specialization of is_checking_policy yields true.

4.5.1 Variadic Constraints

Constraints can also be used with variadic templates. For example, an algorithm
that computes an offset from a stride descriptor and a sequence of indexes can
be declared as:

template<Convertible<size_t>... Args>
void offset(descriptor s, Args... indexes);

The name Convertible<size_t> is just like a normal constraint. The ...
following the constraint means that the constraint will be applied to each type
in the parameter pack Indexes. The equivalent declaration, written using a
requires clause is:

template<typename... Args>
requires Convertible<Args, size_t>()...

void offset(descriptor s, Args... indexes);

The meaning of the requirement is that every template argument in the pack
Args must be convertible to size_t. When instantiated, the argument pack ex-
pands to a conjunction of requirements. That is, Convertible<Args, size_t>()...
will expand to:

Convertible<Arg1, size_t>() && Convertible<Arg2, size_t>() && ...

For each Argi in the template argument pack Args. The constraint is only
satisfied when every term evaluates to true.

A constraint can also be a variadic template. These are called variadic con-
straints, and they have special properties. Unlike the Convertible requirement
above, which is applied to each argument in turn, a variadic constraint is ap-
plied, as a whole, to an entire sequence of arguments.

For example, suppose we want to define a slicing operation that takes a
sequence of indexes and slice objects such that an index requests all of the
elements in a particular dimension, while a slice denotes a sub-sequence of
elements. A mix of indexes and slices is a “slice sequence”, which we can describe
using a variadic constraint.

23

template<typename... Args>
constexpr bool Slice_sequence()
{

return is_slice<Args...>::value;
}

It is a variadic function template taking no function arguments and returning
bool. The definition delegates to a metafunction that computes whether the
property is satisfied.

Our function that computes a matrix descriptor based on a slice sequence
has the following declaration.

template<Slice_sequence... Args>
descriptor sub_matrix(const Args&... args);

Or equivalently:

template<typename... Args>
requires Slice_sequence<Args...>()

descriptor sub_matrix(const Args&... args);

Note the contrast with the Convertible example above. When the constraint
declaration is not variadic, the constraint is applied to each argument, individu-
ally (the expansion is applied to constraining expression). When the constraint
is not variadic, the constraint applies to all of the arguments together (the pack
expansion is applied directly to the template arguments).

4.6 Constrained Members
We conclude this guide with some notes about class templates and their mem-
bers. Member functions, constructors, and operators can be constrained and
overloaded just like regular function templates. For example, the constructors
of the vector class are declared like this:

template<Object T, Allocator A>
class vector
{

requires Movable<T>()
vector(vector&& x); // Move constructor

requires Copyable<T>()
vector(const vector& x); // Copy constructor

// Iterator range constructors
template<Input_iterator I>

vector(I first, I last);

template<Forward_iterator I>
vector(I first, I last);

};

24

Definitions could be written inline or outside the declaration in the usual
ways. For example:

template<Object T, Allocator A>
vector<T, A>::vector(const vector& x) { ... }

template<Object T, Allocator A>
template<Input_iterator I>
vector<T, A>::vector(I first, I last) { ... }

The template requirements must be repeated for each declaration because
the constraints are needed to match the definitions against their original decla-
rations.

25

5 Implementation
We have implemented the proposed features as a branch of GCC 4.8. A few
features are currently still incomplete or being refined: We are considering how
constraints interact with variadic templates, working on improving diagnostics,
and constraining the facilities provided in the Standard Library. The constraints
used in the Standard Library are essentially the same as those presented in “A
Concept Design for the STL” [1].

In this section, we describe the implementation and some extensions we have
provided to simplify the writing of constraints.

5.1 Compiler Support for Type Traits
One of the goals of this implementation is to decrease compile times by pro-
viding facilities to help eliminate complexity in the definition of type traits and
constraints. The support provided by the compiler will also help us under-
stand the kinds of constraints that need to be written and guide the design of
a comprehensive constraint language for concepts.

Compiler support comes in the form of several intrinsics: __is_same, __is_valid_expr
and __is_valid_type. These extend the set of built-in trait expressions already
provided by GCC.

The __is_same intrinsic is a compiler implementation of the is_same type
trait. This helps reduce the number of template instantiations and specializa-
tions needed to define type traits. For example, our definition of is_floating_point
is:

template<typename T>
struct is_floating_point

: integral_constant<bool,
__is_same(T, float) ||
__is_same(T, double) ||
__is_same(T, long double)

>
{ };

The declaration avoids the comparison of specializations by expressing the
conditions as a disjunction, and the use of the intrinsic avoids numerous instan-
tiations of the std::is_same type trait.

The __is_valid_expr and __is_valid_type intrinsic provides facilities for
writing queries on valid expressions and associated type name. With this facility,
we can reduce library complexity and hopefully decrease compile times by reduc-
ing the number of template instantiations required to implement such queries in
C++11. For example, a possible definition of the has_eq and eq_result traits
referenced earlier might be:

template<typename T>
struct eq_result_impl
{

template<typename X>

26

static auto check(const X& x) -> decltype(x == x);
static subst_failure check(...);

using type = decltype(check(declval<T>()));
};

template<typename T>
using eq_result = typename eq_result_impl<T>::type;

template<typename T>
struct has_eq

: integral_constant<bool, !is_same<eq_result<T>, subst_failure>::value>
{ };

While such implementations are easily implemented, they incur significant
overhead. Following this pattern, we could requires three templates for each syn-
tactic query, causing the size of a generic library to grow considerably. Checking
these constraints requires the instantiation of all these templates also. This can
add significant overhead to your compiler times.

The __is_valid_expr and __is_valid_type features provide mechanisms for
eliminating this overhead. The __is_valid_expr intrinsic takes:

• A type name, and evaluates to true if that name is valid

• A use pattern (expression), evaluating to true if the expression can be
type checked.

• An interface requirement, specifying a use pattern and constraints on the
expression’s result type, and evaluating to true if the expression can be
type checked and the result type satisfies the associated constraint.

The syntax for writing interface rquirements is the same as that used to write
requirements in “A Concept Design for the STL” [1]. It follows the intialization
syntax. For example:

T (e) // T can be constructed with decltype(e)
T = {e} // decltype(e) is convertible to T
T == {e} // decltype(e) is the same as T

This feature lets us write SFINAE-friendly traits in a reasonably concise
way:

template<typename T>
constexpr bool Equality_comparable()
{

return __is_valid_expr(bool = {declval<T>() == declval<T>()})
&& __is_valid_expr(bool = {declval<T>() != declval<T>()})

}

If the use pattern cannot be type checked or the result type does not satisfy
the conversion or same-type requirements, the entire intrinsic evaluates to false.

27

The use of declval causes the traits to be more verbose than we would
prefer, but benefit of this specification is that it causes the instantation of only
one template (declval).

The __is_valid_type feature allows programmers to test whether an associ-
ated type name is valid:

template<typename I>
constexpr bool Iterator()
{

return __is_valid_type(Iterator_category<I>);
}

The Iterator constraint evaluates to true whenever the alias Iterator_category
names a valid type name.

5.2 Declval
The diagnostiscs reported by the compiler are pretty-printed expressions re-
quired in a constraint. This means that the readability of a particular require-
ment will affect the readability of error messages. Unfortunately, the only the
way to write syntactic requirements is the generous use of the declval function
to create expressions of a particular type. These requirements become unaccept-
ably verbose. For example, the subscript operator for random access iterators
can be written like this:

__is_valid_expr(decltype(*i) == declval<I>()[declval<Difference_type<I>>()]);

Between all of the enclosing parentheses, brackets, and angles, it is very
difficult to see what is actually required.

In experimenting with ways to increase readability, we created a new decla-
ration specifier, __declval, that could be used to introduce local, unevaluated
variables into a constraint function. These declarations can be used in place of
the declval function. This the readability of constraints significantly.

template<typename I>
constexpr bool Random_access_iterator()
{

__declval I i;
__declval Difference_type<I> n;
return Bidirectional_iterator<I>()

&& __is_valid_expr(I& == {i += n})
&& __is_valid_expr(I == {i + n})
&& __is_valid_expr(I == {n + i})
&& __is_valid_expr(I& == {i -= n})
&& __is_valid_expr(I == {i - n})
&& __is_valid_expr(Difference_type<I> == {i - i})
&& __is_valid_expr(decltype(*i) == {i[n]});

}

28

However, this might be done more elegantly in a different way. In particular,
the requires notation used in [1] allows the introduction of local variables, which
can then be used in constraints.

5.3 The Library
With our implementation, we have also introduced constraints to a small sub-
set of the standard library. This is not a straightforward proposition because
virtually every component in the standard library is a template. This section
serves primarily to document our experience with these constraints. The dec-
larations and constraints described herein should not be considered as part of
this proposal.

We modified the <type_traits>, <iterator>, and <algorithm> headers to
include new constraint definitions and applied them to the required interfaces
in those modules. Details and discussion follow.

5.3.1 Type Traits

There are two major changes to the this module. First, we rewrote all of the
standard type trait implementations to use intrinsics and constraints where
possible, and replaced the use of logical metafunctions with the usual logical
C++ operators. The goal is to reduce complexity and compile times. The
result is about 25% less code. We haven’t measured compile-times yet, but we
expect a reasonable improvement due the the smaller number of instantiations
required to evaluate those properties.

Second, we added constraint predicates for all of the unary type predicates,
and aliases for many of the type transformations (this is a work in progress).
The constraint predicates allow the use of standard type traits as constraints:

template<Floating_point T>
class complex;

Some of the type properties, especially those related to construction and
destruction have implemented in a way that supports ordering for overload
resolution. In particular, it must be the case that all constructible types are
destructible, and that all copy operations are also valid move operations. In the
latter case, this means that copy constructible and copy assignable types are
also move constructible and move assignable, respectively.

We also added constraints for the foundational and function concepts found
in [1]. In the <type_traits> header, this includes:

• Equality_comparable

• Totally_ordered

• Movable

• Copyable

29

• Semiregular

• Regular

• Function

• Regular_function

• Predicate

• Relation

Their definitions follow from those given in [1].

5.3.2 Iterator

The iterator header is extended with new constraints and aliases. The aliases
provide access to the associated types of an iterator. There are three:

• Iterator_category

• Value_type

• Difference_type

The pointer type and reference type are not used in this iterator design;
neither is the iterator_traits traits class. The reason is that the reference
type is always the same as decltype(*i), and the pointer type is never needed
by any standard algorithms. The use of auto further deprecates the need for
these names.

For reference, the implementation of Value_type is:

template<typename T>
struct __value_type
{ using type = __subst_fail; };

template<typename T>
requires __is_valid_type(typename T::value_type)

struct __value_type<T>
{ using type = typename T::value_type; };

template<typename T>
requires __is_valid_type(typename T::value_type)

&& __is_same(typename T::value_type, void)
struct __value_type<T>
{ using type = __subst_fail; };

template<typename T>
struct __value_type<T*>
{ using type = T; };

30

template<typename T>
struct __value_type<const T*>
{ using type = T; };

template<typename T>
using Value_type = typename __value_type<T>::type;

We need a specialization of __value_type to accommodate the fact that the
output_iterator template sets the value type to void. This prevents substitution
failures when writing type names like, const Value_type<I>&.

The __subst_fail type indicates substitution failure. Determining whether
Value_type<I> is defined for requires us to test that the alias is not a name for
__subst_fail. For example, the Input_iterator constraint includes this test:

!__same(Value_type<I>, __subst_fail).

There are a number of support constraints in the library module. Most of
these are defined in [1].

• Readable

• Writable

• Permutable

• Mutable

• Advanceable (was WeaklyIncrementable)

• Incrementable

The standard iterator hierarchy is unchanged.

• Input_iterator

• Output_iterator

• Forward_iterator

• Bidirectional_iterator

• Random_access_iterator

The design in [1] did not include an output iterator. In truth, the supporting
concepts (esp., Writable and Advanceable) largely eliminate the specific need for
the concept. However, we have retained it in this design for parity with input
iterators.

31

5.3.3 Algorithm

We constrained all of the standard algorithms, except those taking random
number generators as arguments. To help simplify the constraints, which can
get fairly verbose, we introduced a number of algorithmic abstractions. Some
of these were used in [1], others are new.

• Indirectly_movable

• Indirectly_copyable

• Indirectly_swappable

• Indirectly_equal

• Indirectly_ordered

• Indirectly_comparable

• Sortable

• Mergeable

The “indirectly” constraints describe operations between two pairs of dif-
ferently typed iterator parameters (e.g., copying between iterators, comparing
elements of two iterators for equality). The names might be improved; these
are primarily intended for convenience. We are not proposing that they should
be part of the Standard Library.

32

6 Extensions
The following sections describe features that we haveconsidered, but are not yet
ready for implementation.

6.1 Concepts
Eventually, we hope to see a full concept design, with full checking of template
bodies and semantics. For now, we are convinced that it can be done (see [1]),
but do not have a complete design.

6.2 Constrained Lambdas
Constraining templates, but not lambdas would create a major irregularity in
the language. Fortunately, constraining lambdas is not too hard. The main
problem is to find a suitably convenient syntax. Consider:

template<Ordered T>
struct Greater {

const T val;
Greater(const T& v) :val{v} {}
bool operator()(const T& x) const { return x>val;}

};

For find_if(), we can use Greater or a lambda:

template<typename T> // deliberately not constrained
void test(vector<string>& v)
{

auto p = find_if(v.begin(),v.end(),Greater{"Bristol"});
auto q = find_if(v.begin(),v.end(),

[](const auto& x) { return x>"Chicago"; });
};

This is of course a trivial example, but if we passed a vector<complex<double>>
the error would be diagnosed at the point of call of greater but only at instan-
tiation time for the lambda. With the increasing popularity of lambdas, this
would be a very bad “oversight.”

Also, we cannot do overload resolution based on properties of a generic
lambda.

How do we say that a lambda is constrained. The obvious first solution is
to use a requires. However, the lambda has no named template argument type
use mention so we would have to write something like

template<typename T> // deliberately not constrained
void test(vector<string>& v)
{

auto q = find_if(v.begin(),v.end(),
[](const auto& x) requires Ordered<decltype(x)>()
{ return x>"Chicago"; });

};

33

Unimpressive!
We suspect that would work, but recommend exploring the (old) notion of

auto being the least constraining type (just like typename in a template argument
list), and then allowing the name of a concept as a more constraining alternative:

template<typename T> // deliberately not constrained
void test(vector<string>& v)
{

auto q = find_if(v.begin(),v.end(),
[](const Orderded& x) { return x>"Chicago"); }

};

That is, a constraint used in a lambda argument type would mean, “the type
of the argument must be one that satisfy the constraint.”

Similarly, we might write:

void sort(Sequence& c) // takes sequences
{

Random_access_iterator q = c.begin(); // we need a random access iterator
// ...

};

For this construct to parse and be unambiguous, the compiler must be able to
know that Ordered, Sequence, and Radom_access_iterator are constraints. Just
knowing that they are constexpr functions is not sufficient.

We suggest that the keyword concept is used to designate a constexpr func-
tions that we deem to be a concept so that it can be used as the base type. This
would also give us a syntactic handle on which to eventually attach semantic
requirements.

34

7 Standard Wording

7.1 Language
TBD.

7.2 Library
TBD.

35

References
[1] Bjarne Stroustrup, Andrew Sutton, et al., A Concept Design for the STL,

Technical Report N3351=12-0041, ISO/IEC JTC 1, Information Technol-
ogy Subcommittee SC 22, Programming Language C++, Jan 2012.

[2] Pete Becker, Working Draft, Standard for Programming Language C++
Technical Report N3351=09-0104, ISO/IEC JTC 1, Information Technol-
ogy Subcommittee SC 22, Programming Language C++, Jun 2012.

[3] Gabriel Dos Reis, Bjarne Stroustrup, and Alisdair Merideth, Axioms:
aemantic Aspects of C++ Concepts Technical Report N3351=09-0077,
ISO/IEC JTC 1, Information Technology Subcommittee SC 22, Program-
ming Language C++, Jun, 2012.

[4] Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, Bjarne Stroustrup, Gabriel
Dos Reis, and Andrew Lumsdaine, “Concepts: Linguistic Support for
Generic Programming in C++”, Proceedings of the 21th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’06), Oct 22-26, 2006, Portland, Oregon, pp.
291-310.

[5] Gabriel Dos Reis and Bjarne Stroustrup, “Specifying C++ concepts”, Pro-
ceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’06), Jan 11-13, 2006, Charleston, South
Carolina, pp. 295-308.

[6] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine “Concept-
Controlled Polymorphism”, Proceedings of the 2nd International Confer-
ence Generative Programming and Component Engineering (GPCE’03),
Sep 22-25, 2003, Erfurt, Germany, pp. 228-244.

36

	Introduction
	Constraints Tutorial
	Introducing Constraints
	Multi-type Constraints
	Overloading

	Defining Constraints

	Constraints and Concepts
	User's Guide
	Anatomy of a Constraint
	Constraint Predicates
	Connectives
	Relations on Constraints

	Declarations, Redeclarations, and Overloading
	Overloading and Specialization
	Non-Type Constraints
	Template Template Parameters
	Variadic Constraints

	Constrained Members

	Implementation
	Compiler Support for Type Traits
	Declval
	The Library
	Type Traits
	Iterator
	Algorithm

	Extensions
	Concepts
	Constrained Lambdas

	Standard Wording
	Language
	Library

